Mangrove biomass estimation in Southwest Thailand using machine learning
Mangroves play a disproportionately large role in carbon sequestration relative to other tropical forest ecosystems. Accurate assessments of mangrove biomass at the site-scale are lacking, especially in mainland Southeast Asia. This study assessed tree biomass and species diversity within a 151 ha m...
Gespeichert in:
Veröffentlicht in: | Applied geography (Sevenoaks) 2013-12, Vol.45, p.311-321 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 321 |
---|---|
container_issue | |
container_start_page | 311 |
container_title | Applied geography (Sevenoaks) |
container_volume | 45 |
creator | Jachowski, Nicholas R.A. Quak, Michelle S.Y. Friess, Daniel A. Duangnamon, Decha Webb, Edward L. Ziegler, Alan D. |
description | Mangroves play a disproportionately large role in carbon sequestration relative to other tropical forest ecosystems. Accurate assessments of mangrove biomass at the site-scale are lacking, especially in mainland Southeast Asia. This study assessed tree biomass and species diversity within a 151 ha mangrove ecosystem on the Andaman Coast of Thailand. High-resolution GeoEye-1 satellite imagery, medium resolution ASTER satellite elevation data, field-based tree measurements, published allometric biomass equations, and a suite of machine learning techniques were used to develop spatial models of mangrove biomass. Field measurements derived a whole-site tree density of 1313 trees ha−1, with Rhizophora spp. comprising 77.7% of the trees across forty-five 400 m2 sample plots. A support vector machine regression model was found to be most accurate by cross-validation for predicting biomass at the site level. Model-estimated above-ground biomass was 250 Mg ha−1; below-ground root biomass was 95 Mg ha−1. Combined above-ground and below-ground biomass for the entire 151-ha stand was 345 (±72.5) Mg ha−1, equivalent to 155 (±32.6) Mg C ha−1. Model evaluation shows the model had greatest prediction error at high biomass values, indicating a need for allometric equations determined over a larger range of tree sizes.
•Tree biomass and species diversity are surveyed in a 151 ha mangrove in Thailand.•There are 1313 trees per hectare, with Rhizophora spp. comprising 77.7% of the trees.•We model biomass using remotely sensed data and machine learning algorithms.•The best model found is a support vector machine regression model.•The model estimates biomass of the mangrove at 345 (±72.5) Mg ha−1. |
doi_str_mv | 10.1016/j.apgeog.2013.09.024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671563478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0143622813002385</els_id><sourcerecordid>1671563478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-6c2efe2d2b75e25e508da833f1b1b38733fb95ea28dae19548fbe48c62b0ecbe3</originalsourceid><addsrcrecordid>eNp9kMtOwzAURC0EEqXwByy8ZJPgR5zHBglVQJGKWFDWlu3cpK6SuNhJEX-Pq7BmdaXRndHMQeiWkpQSmt_vU3VowbUpI5SnpEoJy87QgpYFT4qCk3O0IDTjSc5YeYmuQtgTQjIh6AKt39TQencErK3rVQgYwmh7NVo3YDvgDzeNu--o4e1O2U4NNZ6CHVrcK7OzA-AOlB-icI0uGtUFuPm7S_T5_LRdrZPN-8vr6nGTGM6rMckNgwZYzXQhgAkQpKxVyXlDNdU8FuaNrgQoFmWglcjKRkNWmpxpAkYDX6K7Offg3dcUi8neBgNdrAZuCpLmBRU5z4oyvmbzq_EuBA-NPPg4zf9ISuQJnNzLGZw8gZOkkhFctD3MNogzjha8DMbCYKC2Hswoa2f_D_gFf956CA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671563478</pqid></control><display><type>article</type><title>Mangrove biomass estimation in Southwest Thailand using machine learning</title><source>Access via ScienceDirect (Elsevier)</source><creator>Jachowski, Nicholas R.A. ; Quak, Michelle S.Y. ; Friess, Daniel A. ; Duangnamon, Decha ; Webb, Edward L. ; Ziegler, Alan D.</creator><creatorcontrib>Jachowski, Nicholas R.A. ; Quak, Michelle S.Y. ; Friess, Daniel A. ; Duangnamon, Decha ; Webb, Edward L. ; Ziegler, Alan D.</creatorcontrib><description>Mangroves play a disproportionately large role in carbon sequestration relative to other tropical forest ecosystems. Accurate assessments of mangrove biomass at the site-scale are lacking, especially in mainland Southeast Asia. This study assessed tree biomass and species diversity within a 151 ha mangrove ecosystem on the Andaman Coast of Thailand. High-resolution GeoEye-1 satellite imagery, medium resolution ASTER satellite elevation data, field-based tree measurements, published allometric biomass equations, and a suite of machine learning techniques were used to develop spatial models of mangrove biomass. Field measurements derived a whole-site tree density of 1313 trees ha−1, with Rhizophora spp. comprising 77.7% of the trees across forty-five 400 m2 sample plots. A support vector machine regression model was found to be most accurate by cross-validation for predicting biomass at the site level. Model-estimated above-ground biomass was 250 Mg ha−1; below-ground root biomass was 95 Mg ha−1. Combined above-ground and below-ground biomass for the entire 151-ha stand was 345 (±72.5) Mg ha−1, equivalent to 155 (±32.6) Mg C ha−1. Model evaluation shows the model had greatest prediction error at high biomass values, indicating a need for allometric equations determined over a larger range of tree sizes.
•Tree biomass and species diversity are surveyed in a 151 ha mangrove in Thailand.•There are 1313 trees per hectare, with Rhizophora spp. comprising 77.7% of the trees.•We model biomass using remotely sensed data and machine learning algorithms.•The best model found is a support vector machine regression model.•The model estimates biomass of the mangrove at 345 (±72.5) Mg ha−1.</description><identifier>ISSN: 0143-6228</identifier><identifier>EISSN: 1873-7730</identifier><identifier>DOI: 10.1016/j.apgeog.2013.09.024</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Biomass ; Ecosystems ; Machine learning ; Magnesium ; Mangroves ; Mathematical analysis ; Mathematical models ; Remote sensing ; Thailand ; Trees</subject><ispartof>Applied geography (Sevenoaks), 2013-12, Vol.45, p.311-321</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-6c2efe2d2b75e25e508da833f1b1b38733fb95ea28dae19548fbe48c62b0ecbe3</citedby><cites>FETCH-LOGICAL-c339t-6c2efe2d2b75e25e508da833f1b1b38733fb95ea28dae19548fbe48c62b0ecbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apgeog.2013.09.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Jachowski, Nicholas R.A.</creatorcontrib><creatorcontrib>Quak, Michelle S.Y.</creatorcontrib><creatorcontrib>Friess, Daniel A.</creatorcontrib><creatorcontrib>Duangnamon, Decha</creatorcontrib><creatorcontrib>Webb, Edward L.</creatorcontrib><creatorcontrib>Ziegler, Alan D.</creatorcontrib><title>Mangrove biomass estimation in Southwest Thailand using machine learning</title><title>Applied geography (Sevenoaks)</title><description>Mangroves play a disproportionately large role in carbon sequestration relative to other tropical forest ecosystems. Accurate assessments of mangrove biomass at the site-scale are lacking, especially in mainland Southeast Asia. This study assessed tree biomass and species diversity within a 151 ha mangrove ecosystem on the Andaman Coast of Thailand. High-resolution GeoEye-1 satellite imagery, medium resolution ASTER satellite elevation data, field-based tree measurements, published allometric biomass equations, and a suite of machine learning techniques were used to develop spatial models of mangrove biomass. Field measurements derived a whole-site tree density of 1313 trees ha−1, with Rhizophora spp. comprising 77.7% of the trees across forty-five 400 m2 sample plots. A support vector machine regression model was found to be most accurate by cross-validation for predicting biomass at the site level. Model-estimated above-ground biomass was 250 Mg ha−1; below-ground root biomass was 95 Mg ha−1. Combined above-ground and below-ground biomass for the entire 151-ha stand was 345 (±72.5) Mg ha−1, equivalent to 155 (±32.6) Mg C ha−1. Model evaluation shows the model had greatest prediction error at high biomass values, indicating a need for allometric equations determined over a larger range of tree sizes.
•Tree biomass and species diversity are surveyed in a 151 ha mangrove in Thailand.•There are 1313 trees per hectare, with Rhizophora spp. comprising 77.7% of the trees.•We model biomass using remotely sensed data and machine learning algorithms.•The best model found is a support vector machine regression model.•The model estimates biomass of the mangrove at 345 (±72.5) Mg ha−1.</description><subject>Biomass</subject><subject>Ecosystems</subject><subject>Machine learning</subject><subject>Magnesium</subject><subject>Mangroves</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Remote sensing</subject><subject>Thailand</subject><subject>Trees</subject><issn>0143-6228</issn><issn>1873-7730</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAURC0EEqXwByy8ZJPgR5zHBglVQJGKWFDWlu3cpK6SuNhJEX-Pq7BmdaXRndHMQeiWkpQSmt_vU3VowbUpI5SnpEoJy87QgpYFT4qCk3O0IDTjSc5YeYmuQtgTQjIh6AKt39TQencErK3rVQgYwmh7NVo3YDvgDzeNu--o4e1O2U4NNZ6CHVrcK7OzA-AOlB-icI0uGtUFuPm7S_T5_LRdrZPN-8vr6nGTGM6rMckNgwZYzXQhgAkQpKxVyXlDNdU8FuaNrgQoFmWglcjKRkNWmpxpAkYDX6K7Offg3dcUi8neBgNdrAZuCpLmBRU5z4oyvmbzq_EuBA-NPPg4zf9ISuQJnNzLGZw8gZOkkhFctD3MNogzjha8DMbCYKC2Hswoa2f_D_gFf956CA</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Jachowski, Nicholas R.A.</creator><creator>Quak, Michelle S.Y.</creator><creator>Friess, Daniel A.</creator><creator>Duangnamon, Decha</creator><creator>Webb, Edward L.</creator><creator>Ziegler, Alan D.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201312</creationdate><title>Mangrove biomass estimation in Southwest Thailand using machine learning</title><author>Jachowski, Nicholas R.A. ; Quak, Michelle S.Y. ; Friess, Daniel A. ; Duangnamon, Decha ; Webb, Edward L. ; Ziegler, Alan D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-6c2efe2d2b75e25e508da833f1b1b38733fb95ea28dae19548fbe48c62b0ecbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biomass</topic><topic>Ecosystems</topic><topic>Machine learning</topic><topic>Magnesium</topic><topic>Mangroves</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Remote sensing</topic><topic>Thailand</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jachowski, Nicholas R.A.</creatorcontrib><creatorcontrib>Quak, Michelle S.Y.</creatorcontrib><creatorcontrib>Friess, Daniel A.</creatorcontrib><creatorcontrib>Duangnamon, Decha</creatorcontrib><creatorcontrib>Webb, Edward L.</creatorcontrib><creatorcontrib>Ziegler, Alan D.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied geography (Sevenoaks)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jachowski, Nicholas R.A.</au><au>Quak, Michelle S.Y.</au><au>Friess, Daniel A.</au><au>Duangnamon, Decha</au><au>Webb, Edward L.</au><au>Ziegler, Alan D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mangrove biomass estimation in Southwest Thailand using machine learning</atitle><jtitle>Applied geography (Sevenoaks)</jtitle><date>2013-12</date><risdate>2013</risdate><volume>45</volume><spage>311</spage><epage>321</epage><pages>311-321</pages><issn>0143-6228</issn><eissn>1873-7730</eissn><abstract>Mangroves play a disproportionately large role in carbon sequestration relative to other tropical forest ecosystems. Accurate assessments of mangrove biomass at the site-scale are lacking, especially in mainland Southeast Asia. This study assessed tree biomass and species diversity within a 151 ha mangrove ecosystem on the Andaman Coast of Thailand. High-resolution GeoEye-1 satellite imagery, medium resolution ASTER satellite elevation data, field-based tree measurements, published allometric biomass equations, and a suite of machine learning techniques were used to develop spatial models of mangrove biomass. Field measurements derived a whole-site tree density of 1313 trees ha−1, with Rhizophora spp. comprising 77.7% of the trees across forty-five 400 m2 sample plots. A support vector machine regression model was found to be most accurate by cross-validation for predicting biomass at the site level. Model-estimated above-ground biomass was 250 Mg ha−1; below-ground root biomass was 95 Mg ha−1. Combined above-ground and below-ground biomass for the entire 151-ha stand was 345 (±72.5) Mg ha−1, equivalent to 155 (±32.6) Mg C ha−1. Model evaluation shows the model had greatest prediction error at high biomass values, indicating a need for allometric equations determined over a larger range of tree sizes.
•Tree biomass and species diversity are surveyed in a 151 ha mangrove in Thailand.•There are 1313 trees per hectare, with Rhizophora spp. comprising 77.7% of the trees.•We model biomass using remotely sensed data and machine learning algorithms.•The best model found is a support vector machine regression model.•The model estimates biomass of the mangrove at 345 (±72.5) Mg ha−1.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.apgeog.2013.09.024</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-6228 |
ispartof | Applied geography (Sevenoaks), 2013-12, Vol.45, p.311-321 |
issn | 0143-6228 1873-7730 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671563478 |
source | Access via ScienceDirect (Elsevier) |
subjects | Biomass Ecosystems Machine learning Magnesium Mangroves Mathematical analysis Mathematical models Remote sensing Thailand Trees |
title | Mangrove biomass estimation in Southwest Thailand using machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A08%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mangrove%20biomass%20estimation%20in%20Southwest%20Thailand%20using%20machine%20learning&rft.jtitle=Applied%20geography%20(Sevenoaks)&rft.au=Jachowski,%20Nicholas%20R.A.&rft.date=2013-12&rft.volume=45&rft.spage=311&rft.epage=321&rft.pages=311-321&rft.issn=0143-6228&rft.eissn=1873-7730&rft_id=info:doi/10.1016/j.apgeog.2013.09.024&rft_dat=%3Cproquest_cross%3E1671563478%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671563478&rft_id=info:pmid/&rft_els_id=S0143622813002385&rfr_iscdi=true |