Mangrove biomass estimation in Southwest Thailand using machine learning

Mangroves play a disproportionately large role in carbon sequestration relative to other tropical forest ecosystems. Accurate assessments of mangrove biomass at the site-scale are lacking, especially in mainland Southeast Asia. This study assessed tree biomass and species diversity within a 151 ha m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied geography (Sevenoaks) 2013-12, Vol.45, p.311-321
Hauptverfasser: Jachowski, Nicholas R.A., Quak, Michelle S.Y., Friess, Daniel A., Duangnamon, Decha, Webb, Edward L., Ziegler, Alan D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 321
container_issue
container_start_page 311
container_title Applied geography (Sevenoaks)
container_volume 45
creator Jachowski, Nicholas R.A.
Quak, Michelle S.Y.
Friess, Daniel A.
Duangnamon, Decha
Webb, Edward L.
Ziegler, Alan D.
description Mangroves play a disproportionately large role in carbon sequestration relative to other tropical forest ecosystems. Accurate assessments of mangrove biomass at the site-scale are lacking, especially in mainland Southeast Asia. This study assessed tree biomass and species diversity within a 151 ha mangrove ecosystem on the Andaman Coast of Thailand. High-resolution GeoEye-1 satellite imagery, medium resolution ASTER satellite elevation data, field-based tree measurements, published allometric biomass equations, and a suite of machine learning techniques were used to develop spatial models of mangrove biomass. Field measurements derived a whole-site tree density of 1313 trees ha−1, with Rhizophora spp. comprising 77.7% of the trees across forty-five 400 m2 sample plots. A support vector machine regression model was found to be most accurate by cross-validation for predicting biomass at the site level. Model-estimated above-ground biomass was 250 Mg ha−1; below-ground root biomass was 95 Mg ha−1. Combined above-ground and below-ground biomass for the entire 151-ha stand was 345 (±72.5) Mg ha−1, equivalent to 155 (±32.6) Mg C ha−1. Model evaluation shows the model had greatest prediction error at high biomass values, indicating a need for allometric equations determined over a larger range of tree sizes. •Tree biomass and species diversity are surveyed in a 151 ha mangrove in Thailand.•There are 1313 trees per hectare, with Rhizophora spp. comprising 77.7% of the trees.•We model biomass using remotely sensed data and machine learning algorithms.•The best model found is a support vector machine regression model.•The model estimates biomass of the mangrove at 345 (±72.5) Mg ha−1.
doi_str_mv 10.1016/j.apgeog.2013.09.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671563478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0143622813002385</els_id><sourcerecordid>1671563478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-6c2efe2d2b75e25e508da833f1b1b38733fb95ea28dae19548fbe48c62b0ecbe3</originalsourceid><addsrcrecordid>eNp9kMtOwzAURC0EEqXwByy8ZJPgR5zHBglVQJGKWFDWlu3cpK6SuNhJEX-Pq7BmdaXRndHMQeiWkpQSmt_vU3VowbUpI5SnpEoJy87QgpYFT4qCk3O0IDTjSc5YeYmuQtgTQjIh6AKt39TQencErK3rVQgYwmh7NVo3YDvgDzeNu--o4e1O2U4NNZ6CHVrcK7OzA-AOlB-icI0uGtUFuPm7S_T5_LRdrZPN-8vr6nGTGM6rMckNgwZYzXQhgAkQpKxVyXlDNdU8FuaNrgQoFmWglcjKRkNWmpxpAkYDX6K7Offg3dcUi8neBgNdrAZuCpLmBRU5z4oyvmbzq_EuBA-NPPg4zf9ISuQJnNzLGZw8gZOkkhFctD3MNogzjha8DMbCYKC2Hswoa2f_D_gFf956CA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671563478</pqid></control><display><type>article</type><title>Mangrove biomass estimation in Southwest Thailand using machine learning</title><source>Access via ScienceDirect (Elsevier)</source><creator>Jachowski, Nicholas R.A. ; Quak, Michelle S.Y. ; Friess, Daniel A. ; Duangnamon, Decha ; Webb, Edward L. ; Ziegler, Alan D.</creator><creatorcontrib>Jachowski, Nicholas R.A. ; Quak, Michelle S.Y. ; Friess, Daniel A. ; Duangnamon, Decha ; Webb, Edward L. ; Ziegler, Alan D.</creatorcontrib><description>Mangroves play a disproportionately large role in carbon sequestration relative to other tropical forest ecosystems. Accurate assessments of mangrove biomass at the site-scale are lacking, especially in mainland Southeast Asia. This study assessed tree biomass and species diversity within a 151 ha mangrove ecosystem on the Andaman Coast of Thailand. High-resolution GeoEye-1 satellite imagery, medium resolution ASTER satellite elevation data, field-based tree measurements, published allometric biomass equations, and a suite of machine learning techniques were used to develop spatial models of mangrove biomass. Field measurements derived a whole-site tree density of 1313 trees ha−1, with Rhizophora spp. comprising 77.7% of the trees across forty-five 400 m2 sample plots. A support vector machine regression model was found to be most accurate by cross-validation for predicting biomass at the site level. Model-estimated above-ground biomass was 250 Mg ha−1; below-ground root biomass was 95 Mg ha−1. Combined above-ground and below-ground biomass for the entire 151-ha stand was 345 (±72.5) Mg ha−1, equivalent to 155 (±32.6) Mg C ha−1. Model evaluation shows the model had greatest prediction error at high biomass values, indicating a need for allometric equations determined over a larger range of tree sizes. •Tree biomass and species diversity are surveyed in a 151 ha mangrove in Thailand.•There are 1313 trees per hectare, with Rhizophora spp. comprising 77.7% of the trees.•We model biomass using remotely sensed data and machine learning algorithms.•The best model found is a support vector machine regression model.•The model estimates biomass of the mangrove at 345 (±72.5) Mg ha−1.</description><identifier>ISSN: 0143-6228</identifier><identifier>EISSN: 1873-7730</identifier><identifier>DOI: 10.1016/j.apgeog.2013.09.024</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Biomass ; Ecosystems ; Machine learning ; Magnesium ; Mangroves ; Mathematical analysis ; Mathematical models ; Remote sensing ; Thailand ; Trees</subject><ispartof>Applied geography (Sevenoaks), 2013-12, Vol.45, p.311-321</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-6c2efe2d2b75e25e508da833f1b1b38733fb95ea28dae19548fbe48c62b0ecbe3</citedby><cites>FETCH-LOGICAL-c339t-6c2efe2d2b75e25e508da833f1b1b38733fb95ea28dae19548fbe48c62b0ecbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apgeog.2013.09.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Jachowski, Nicholas R.A.</creatorcontrib><creatorcontrib>Quak, Michelle S.Y.</creatorcontrib><creatorcontrib>Friess, Daniel A.</creatorcontrib><creatorcontrib>Duangnamon, Decha</creatorcontrib><creatorcontrib>Webb, Edward L.</creatorcontrib><creatorcontrib>Ziegler, Alan D.</creatorcontrib><title>Mangrove biomass estimation in Southwest Thailand using machine learning</title><title>Applied geography (Sevenoaks)</title><description>Mangroves play a disproportionately large role in carbon sequestration relative to other tropical forest ecosystems. Accurate assessments of mangrove biomass at the site-scale are lacking, especially in mainland Southeast Asia. This study assessed tree biomass and species diversity within a 151 ha mangrove ecosystem on the Andaman Coast of Thailand. High-resolution GeoEye-1 satellite imagery, medium resolution ASTER satellite elevation data, field-based tree measurements, published allometric biomass equations, and a suite of machine learning techniques were used to develop spatial models of mangrove biomass. Field measurements derived a whole-site tree density of 1313 trees ha−1, with Rhizophora spp. comprising 77.7% of the trees across forty-five 400 m2 sample plots. A support vector machine regression model was found to be most accurate by cross-validation for predicting biomass at the site level. Model-estimated above-ground biomass was 250 Mg ha−1; below-ground root biomass was 95 Mg ha−1. Combined above-ground and below-ground biomass for the entire 151-ha stand was 345 (±72.5) Mg ha−1, equivalent to 155 (±32.6) Mg C ha−1. Model evaluation shows the model had greatest prediction error at high biomass values, indicating a need for allometric equations determined over a larger range of tree sizes. •Tree biomass and species diversity are surveyed in a 151 ha mangrove in Thailand.•There are 1313 trees per hectare, with Rhizophora spp. comprising 77.7% of the trees.•We model biomass using remotely sensed data and machine learning algorithms.•The best model found is a support vector machine regression model.•The model estimates biomass of the mangrove at 345 (±72.5) Mg ha−1.</description><subject>Biomass</subject><subject>Ecosystems</subject><subject>Machine learning</subject><subject>Magnesium</subject><subject>Mangroves</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Remote sensing</subject><subject>Thailand</subject><subject>Trees</subject><issn>0143-6228</issn><issn>1873-7730</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAURC0EEqXwByy8ZJPgR5zHBglVQJGKWFDWlu3cpK6SuNhJEX-Pq7BmdaXRndHMQeiWkpQSmt_vU3VowbUpI5SnpEoJy87QgpYFT4qCk3O0IDTjSc5YeYmuQtgTQjIh6AKt39TQencErK3rVQgYwmh7NVo3YDvgDzeNu--o4e1O2U4NNZ6CHVrcK7OzA-AOlB-icI0uGtUFuPm7S_T5_LRdrZPN-8vr6nGTGM6rMckNgwZYzXQhgAkQpKxVyXlDNdU8FuaNrgQoFmWglcjKRkNWmpxpAkYDX6K7Offg3dcUi8neBgNdrAZuCpLmBRU5z4oyvmbzq_EuBA-NPPg4zf9ISuQJnNzLGZw8gZOkkhFctD3MNogzjha8DMbCYKC2Hswoa2f_D_gFf956CA</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Jachowski, Nicholas R.A.</creator><creator>Quak, Michelle S.Y.</creator><creator>Friess, Daniel A.</creator><creator>Duangnamon, Decha</creator><creator>Webb, Edward L.</creator><creator>Ziegler, Alan D.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201312</creationdate><title>Mangrove biomass estimation in Southwest Thailand using machine learning</title><author>Jachowski, Nicholas R.A. ; Quak, Michelle S.Y. ; Friess, Daniel A. ; Duangnamon, Decha ; Webb, Edward L. ; Ziegler, Alan D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-6c2efe2d2b75e25e508da833f1b1b38733fb95ea28dae19548fbe48c62b0ecbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biomass</topic><topic>Ecosystems</topic><topic>Machine learning</topic><topic>Magnesium</topic><topic>Mangroves</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Remote sensing</topic><topic>Thailand</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jachowski, Nicholas R.A.</creatorcontrib><creatorcontrib>Quak, Michelle S.Y.</creatorcontrib><creatorcontrib>Friess, Daniel A.</creatorcontrib><creatorcontrib>Duangnamon, Decha</creatorcontrib><creatorcontrib>Webb, Edward L.</creatorcontrib><creatorcontrib>Ziegler, Alan D.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied geography (Sevenoaks)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jachowski, Nicholas R.A.</au><au>Quak, Michelle S.Y.</au><au>Friess, Daniel A.</au><au>Duangnamon, Decha</au><au>Webb, Edward L.</au><au>Ziegler, Alan D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mangrove biomass estimation in Southwest Thailand using machine learning</atitle><jtitle>Applied geography (Sevenoaks)</jtitle><date>2013-12</date><risdate>2013</risdate><volume>45</volume><spage>311</spage><epage>321</epage><pages>311-321</pages><issn>0143-6228</issn><eissn>1873-7730</eissn><abstract>Mangroves play a disproportionately large role in carbon sequestration relative to other tropical forest ecosystems. Accurate assessments of mangrove biomass at the site-scale are lacking, especially in mainland Southeast Asia. This study assessed tree biomass and species diversity within a 151 ha mangrove ecosystem on the Andaman Coast of Thailand. High-resolution GeoEye-1 satellite imagery, medium resolution ASTER satellite elevation data, field-based tree measurements, published allometric biomass equations, and a suite of machine learning techniques were used to develop spatial models of mangrove biomass. Field measurements derived a whole-site tree density of 1313 trees ha−1, with Rhizophora spp. comprising 77.7% of the trees across forty-five 400 m2 sample plots. A support vector machine regression model was found to be most accurate by cross-validation for predicting biomass at the site level. Model-estimated above-ground biomass was 250 Mg ha−1; below-ground root biomass was 95 Mg ha−1. Combined above-ground and below-ground biomass for the entire 151-ha stand was 345 (±72.5) Mg ha−1, equivalent to 155 (±32.6) Mg C ha−1. Model evaluation shows the model had greatest prediction error at high biomass values, indicating a need for allometric equations determined over a larger range of tree sizes. •Tree biomass and species diversity are surveyed in a 151 ha mangrove in Thailand.•There are 1313 trees per hectare, with Rhizophora spp. comprising 77.7% of the trees.•We model biomass using remotely sensed data and machine learning algorithms.•The best model found is a support vector machine regression model.•The model estimates biomass of the mangrove at 345 (±72.5) Mg ha−1.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.apgeog.2013.09.024</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-6228
ispartof Applied geography (Sevenoaks), 2013-12, Vol.45, p.311-321
issn 0143-6228
1873-7730
language eng
recordid cdi_proquest_miscellaneous_1671563478
source Access via ScienceDirect (Elsevier)
subjects Biomass
Ecosystems
Machine learning
Magnesium
Mangroves
Mathematical analysis
Mathematical models
Remote sensing
Thailand
Trees
title Mangrove biomass estimation in Southwest Thailand using machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A08%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mangrove%20biomass%20estimation%20in%20Southwest%20Thailand%20using%20machine%20learning&rft.jtitle=Applied%20geography%20(Sevenoaks)&rft.au=Jachowski,%20Nicholas%20R.A.&rft.date=2013-12&rft.volume=45&rft.spage=311&rft.epage=321&rft.pages=311-321&rft.issn=0143-6228&rft.eissn=1873-7730&rft_id=info:doi/10.1016/j.apgeog.2013.09.024&rft_dat=%3Cproquest_cross%3E1671563478%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671563478&rft_id=info:pmid/&rft_els_id=S0143622813002385&rfr_iscdi=true