Algorithms for spatial collocation pattern mining in a limited memory environment: a summary of results

Rapid growth of spatial datasets requires methods to find (semi-)automatically spatial knowledge from these sets. Spatial collocation patterns represent subsets of spatial features whose instances are frequently located together in a spatial neighborhood. In recent years, efficient methods for collo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent information systems 2014-08, Vol.43 (1), p.147-182
Hauptverfasser: Boinski, Pawel, Zakrzewicz, Maciej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 182
container_issue 1
container_start_page 147
container_title Journal of intelligent information systems
container_volume 43
creator Boinski, Pawel
Zakrzewicz, Maciej
description Rapid growth of spatial datasets requires methods to find (semi-)automatically spatial knowledge from these sets. Spatial collocation patterns represent subsets of spatial features whose instances are frequently located together in a spatial neighborhood. In recent years, efficient methods for collocation discovery have been developed, however, none of them assume limited size of the operational memory or limited access to memory with short access times. Such restrictions are especially important in the context of the large size of the data structures required for efficient identification of collocation instances. In this work we present and compare three algorithms for collocation pattern mining in a limited memory environment. The first algorithm is based on the well-known joinless method introduced by Shekhar and Yoo. The second and third algorithms are inspired by a tree structure ( iCPI-tree ) presented by Wang et al. In our experimental evaluation, we have compared the efficiency of the algorithms, both on synthetic and real world datasets.
doi_str_mv 10.1007/s10844-014-0311-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671562167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671562167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-6d95d480a535492fd99e12f513a5594539b158551ff74041c486b6bdeb6ef6db3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3AjZvR3JkkM3FXii8ouNF1mEdSU_KoyYzUf29KXYjgItxw851zbw5Cl0BugJD6NgFpKC0I5FMBFLsjNANWV0XNa3aMZkSUrBCClKfoLKUNIUQ0nMzQemHXIZrx3SWsQ8Rp246mtbgP1oY-34PHuTWq6LEz3vg1Nh632BpnRjVgp1yIX1j5TxODd8qPd_k1Tc61uR00jipNdkzn6ES3NqmLnzpHbw_3r8unYvXy-LxcrIq-omIs-CDYQBvSsopRUepBCAWlZlC1jAnKKtEBaxgDrWtKKPS04R3vBtVxpfnQVXN0ffDdxvAxqTRKZ1KvrG29ClOSwGtgvMwlo1d_0E2Yos_bSWD7UTURkCk4UH0MKUWl5Taa_eckELmPXh6ilzl6uY9e7rKmPGhSZv1axV_O_4q-AVfVh5Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545397091</pqid></control><display><type>article</type><title>Algorithms for spatial collocation pattern mining in a limited memory environment: a summary of results</title><source>SpringerLink Journals - AutoHoldings</source><creator>Boinski, Pawel ; Zakrzewicz, Maciej</creator><creatorcontrib>Boinski, Pawel ; Zakrzewicz, Maciej</creatorcontrib><description>Rapid growth of spatial datasets requires methods to find (semi-)automatically spatial knowledge from these sets. Spatial collocation patterns represent subsets of spatial features whose instances are frequently located together in a spatial neighborhood. In recent years, efficient methods for collocation discovery have been developed, however, none of them assume limited size of the operational memory or limited access to memory with short access times. Such restrictions are especially important in the context of the large size of the data structures required for efficient identification of collocation instances. In this work we present and compare three algorithms for collocation pattern mining in a limited memory environment. The first algorithm is based on the well-known joinless method introduced by Shekhar and Yoo. The second and third algorithms are inspired by a tree structure ( iCPI-tree ) presented by Wang et al. In our experimental evaluation, we have compared the efficiency of the algorithms, both on synthetic and real world datasets.</description><identifier>ISSN: 0925-9902</identifier><identifier>EISSN: 1573-7675</identifier><identifier>DOI: 10.1007/s10844-014-0311-x</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Access time ; Algorithms ; Artificial Intelligence ; Associations ; Collocation ; Computer Science ; Constrictions ; Data mining ; Data Structures and Information Theory ; Datasets ; Global positioning systems ; GPS ; Information Storage and Retrieval ; Information systems ; IT in Business ; Natural Language Processing (NLP) ; Pattern analysis ; Spatial data ; Studies ; Systems design ; Trees</subject><ispartof>Journal of intelligent information systems, 2014-08, Vol.43 (1), p.147-182</ispartof><rights>Springer Science+Business Media New York 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-6d95d480a535492fd99e12f513a5594539b158551ff74041c486b6bdeb6ef6db3</citedby><cites>FETCH-LOGICAL-c349t-6d95d480a535492fd99e12f513a5594539b158551ff74041c486b6bdeb6ef6db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10844-014-0311-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10844-014-0311-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Boinski, Pawel</creatorcontrib><creatorcontrib>Zakrzewicz, Maciej</creatorcontrib><title>Algorithms for spatial collocation pattern mining in a limited memory environment: a summary of results</title><title>Journal of intelligent information systems</title><addtitle>J Intell Inf Syst</addtitle><description>Rapid growth of spatial datasets requires methods to find (semi-)automatically spatial knowledge from these sets. Spatial collocation patterns represent subsets of spatial features whose instances are frequently located together in a spatial neighborhood. In recent years, efficient methods for collocation discovery have been developed, however, none of them assume limited size of the operational memory or limited access to memory with short access times. Such restrictions are especially important in the context of the large size of the data structures required for efficient identification of collocation instances. In this work we present and compare three algorithms for collocation pattern mining in a limited memory environment. The first algorithm is based on the well-known joinless method introduced by Shekhar and Yoo. The second and third algorithms are inspired by a tree structure ( iCPI-tree ) presented by Wang et al. In our experimental evaluation, we have compared the efficiency of the algorithms, both on synthetic and real world datasets.</description><subject>Access time</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Associations</subject><subject>Collocation</subject><subject>Computer Science</subject><subject>Constrictions</subject><subject>Data mining</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Information Storage and Retrieval</subject><subject>Information systems</subject><subject>IT in Business</subject><subject>Natural Language Processing (NLP)</subject><subject>Pattern analysis</subject><subject>Spatial data</subject><subject>Studies</subject><subject>Systems design</subject><subject>Trees</subject><issn>0925-9902</issn><issn>1573-7675</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wF3AjZvR3JkkM3FXii8ouNF1mEdSU_KoyYzUf29KXYjgItxw851zbw5Cl0BugJD6NgFpKC0I5FMBFLsjNANWV0XNa3aMZkSUrBCClKfoLKUNIUQ0nMzQemHXIZrx3SWsQ8Rp246mtbgP1oY-34PHuTWq6LEz3vg1Nh632BpnRjVgp1yIX1j5TxODd8qPd_k1Tc61uR00jipNdkzn6ES3NqmLnzpHbw_3r8unYvXy-LxcrIq-omIs-CDYQBvSsopRUepBCAWlZlC1jAnKKtEBaxgDrWtKKPS04R3vBtVxpfnQVXN0ffDdxvAxqTRKZ1KvrG29ClOSwGtgvMwlo1d_0E2Yos_bSWD7UTURkCk4UH0MKUWl5Taa_eckELmPXh6ilzl6uY9e7rKmPGhSZv1axV_O_4q-AVfVh5Y</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Boinski, Pawel</creator><creator>Zakrzewicz, Maciej</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20140801</creationdate><title>Algorithms for spatial collocation pattern mining in a limited memory environment: a summary of results</title><author>Boinski, Pawel ; Zakrzewicz, Maciej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-6d95d480a535492fd99e12f513a5594539b158551ff74041c486b6bdeb6ef6db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Access time</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Associations</topic><topic>Collocation</topic><topic>Computer Science</topic><topic>Constrictions</topic><topic>Data mining</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Information Storage and Retrieval</topic><topic>Information systems</topic><topic>IT in Business</topic><topic>Natural Language Processing (NLP)</topic><topic>Pattern analysis</topic><topic>Spatial data</topic><topic>Studies</topic><topic>Systems design</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boinski, Pawel</creatorcontrib><creatorcontrib>Zakrzewicz, Maciej</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boinski, Pawel</au><au>Zakrzewicz, Maciej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithms for spatial collocation pattern mining in a limited memory environment: a summary of results</atitle><jtitle>Journal of intelligent information systems</jtitle><stitle>J Intell Inf Syst</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>43</volume><issue>1</issue><spage>147</spage><epage>182</epage><pages>147-182</pages><issn>0925-9902</issn><eissn>1573-7675</eissn><abstract>Rapid growth of spatial datasets requires methods to find (semi-)automatically spatial knowledge from these sets. Spatial collocation patterns represent subsets of spatial features whose instances are frequently located together in a spatial neighborhood. In recent years, efficient methods for collocation discovery have been developed, however, none of them assume limited size of the operational memory or limited access to memory with short access times. Such restrictions are especially important in the context of the large size of the data structures required for efficient identification of collocation instances. In this work we present and compare three algorithms for collocation pattern mining in a limited memory environment. The first algorithm is based on the well-known joinless method introduced by Shekhar and Yoo. The second and third algorithms are inspired by a tree structure ( iCPI-tree ) presented by Wang et al. In our experimental evaluation, we have compared the efficiency of the algorithms, both on synthetic and real world datasets.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10844-014-0311-x</doi><tpages>36</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-9902
ispartof Journal of intelligent information systems, 2014-08, Vol.43 (1), p.147-182
issn 0925-9902
1573-7675
language eng
recordid cdi_proquest_miscellaneous_1671562167
source SpringerLink Journals - AutoHoldings
subjects Access time
Algorithms
Artificial Intelligence
Associations
Collocation
Computer Science
Constrictions
Data mining
Data Structures and Information Theory
Datasets
Global positioning systems
GPS
Information Storage and Retrieval
Information systems
IT in Business
Natural Language Processing (NLP)
Pattern analysis
Spatial data
Studies
Systems design
Trees
title Algorithms for spatial collocation pattern mining in a limited memory environment: a summary of results
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A17%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithms%20for%20spatial%20collocation%20pattern%20mining%20in%20a%20limited%20memory%20environment:%20a%20summary%20of%20results&rft.jtitle=Journal%20of%20intelligent%20information%20systems&rft.au=Boinski,%20Pawel&rft.date=2014-08-01&rft.volume=43&rft.issue=1&rft.spage=147&rft.epage=182&rft.pages=147-182&rft.issn=0925-9902&rft.eissn=1573-7675&rft_id=info:doi/10.1007/s10844-014-0311-x&rft_dat=%3Cproquest_cross%3E1671562167%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545397091&rft_id=info:pmid/&rfr_iscdi=true