VDB: High-Resolution Sparse Volumes with Dynamic Topology
We have developed a novel hierarchical data structure for the efficient representation of sparse, time-varying volumetric data discretized on a 3D grid. Our “VDB”, so named because it is a Volumetric, Dynamic grid that shares several characteristics with B+trees, exploits spatial coherency of time-v...
Gespeichert in:
Veröffentlicht in: | ACM transactions on graphics 2013-06, Vol.32 (3), p.1-22 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | ACM transactions on graphics |
container_volume | 32 |
creator | MUSETH, Ken |
description | We have developed a novel hierarchical data structure for the efficient representation of sparse, time-varying volumetric data discretized on a 3D grid. Our “VDB”, so named because it is a Volumetric, Dynamic grid that shares several characteristics with B+trees, exploits spatial coherency of time-varying data to separately and compactly encode data values and grid topology. VDB models a virtually infinite 3D index space that allows for cache-coherent and fast data access into sparse volumes of high resolution. It imposes no topology restrictions on the sparsity of the volumetric data, and it supports fast (average
O
(1)) random access patterns when the data are inserted, retrieved, or deleted. This is in contrast to most existing sparse volumetric data structures, which assume either static or manifold topology and require specific data access patterns to compensate for slow random access. Since the VDB data structure is fundamentally hierarchical, it also facilitates adaptive grid sampling, and the inherent acceleration structure leads to fast algorithms that are well-suited for simulations. As such, VDB has proven useful for several applications that call for large, sparse, animated volumes, for example, level set dynamics and cloud modeling. In this article, we showcase some of these algorithms and compare VDB with existing, state-of-the-art data structures. |
doi_str_mv | 10.1145/2487228.2487235 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671561980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671561980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-d485b9a4043d5ee812117ce70d245d75c484b771ad38f4f95fbdeca29698af7d3</originalsourceid><addsrcrecordid>eNo9kM1LwzAAxYMoOKdnr70IXrrls0m96aZOGAg6dw1ZPrZI29SkQ_bfW13x9Hjw3u_wA-AawQlClE0xFRxjMflLwk7ACDHGc04KcQpGkBOYQwLRObhI6RNCWFBajEC5nj_cZQu_3eVvNoVq3_nQZO-tislm677XNmXfvttl80Ojaq-zVWhDFbaHS3DmVJXs1ZBj8PH0uJot8uXr88vsfplrzESXGyrYplQUUmKYtQJhhLi2HBpMmeFMU0E3nCNliHDUlcxtjNUKl0UplOOGjMHtkdvG8LW3qZO1T9pWlWps2CeJCo5YgUoB--n0ONUxpBStk230tYoHiaD8lSQHSXKQ1D9uBrhKWlUuqkb79H_DnPVgRsgPDURlGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671561980</pqid></control><display><type>article</type><title>VDB: High-Resolution Sparse Volumes with Dynamic Topology</title><source>ACM Digital Library Complete</source><creator>MUSETH, Ken</creator><creatorcontrib>MUSETH, Ken</creatorcontrib><description>We have developed a novel hierarchical data structure for the efficient representation of sparse, time-varying volumetric data discretized on a 3D grid. Our “VDB”, so named because it is a Volumetric, Dynamic grid that shares several characteristics with B+trees, exploits spatial coherency of time-varying data to separately and compactly encode data values and grid topology. VDB models a virtually infinite 3D index space that allows for cache-coherent and fast data access into sparse volumes of high resolution. It imposes no topology restrictions on the sparsity of the volumetric data, and it supports fast (average
O
(1)) random access patterns when the data are inserted, retrieved, or deleted. This is in contrast to most existing sparse volumetric data structures, which assume either static or manifold topology and require specific data access patterns to compensate for slow random access. Since the VDB data structure is fundamentally hierarchical, it also facilitates adaptive grid sampling, and the inherent acceleration structure leads to fast algorithms that are well-suited for simulations. As such, VDB has proven useful for several applications that call for large, sparse, animated volumes, for example, level set dynamics and cloud modeling. In this article, we showcase some of these algorithms and compare VDB with existing, state-of-the-art data structures.</description><identifier>ISSN: 0730-0301</identifier><identifier>EISSN: 1557-7368</identifier><identifier>DOI: 10.1145/2487228.2487235</identifier><language>eng</language><publisher>New York, NY: Association for Computing Machinery</publisher><subject>Algorithms ; Applied sciences ; Artificial intelligence ; Clouds ; Computational methods in fluid dynamics ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Data structures ; Dynamics ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Pattern recognition. Digital image processing. Computational geometry ; Physics ; Random access ; Sampling ; Software ; Three dimensional ; Topology</subject><ispartof>ACM transactions on graphics, 2013-06, Vol.32 (3), p.1-22</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c258t-d485b9a4043d5ee812117ce70d245d75c484b771ad38f4f95fbdeca29698af7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27519853$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>MUSETH, Ken</creatorcontrib><title>VDB: High-Resolution Sparse Volumes with Dynamic Topology</title><title>ACM transactions on graphics</title><description>We have developed a novel hierarchical data structure for the efficient representation of sparse, time-varying volumetric data discretized on a 3D grid. Our “VDB”, so named because it is a Volumetric, Dynamic grid that shares several characteristics with B+trees, exploits spatial coherency of time-varying data to separately and compactly encode data values and grid topology. VDB models a virtually infinite 3D index space that allows for cache-coherent and fast data access into sparse volumes of high resolution. It imposes no topology restrictions on the sparsity of the volumetric data, and it supports fast (average
O
(1)) random access patterns when the data are inserted, retrieved, or deleted. This is in contrast to most existing sparse volumetric data structures, which assume either static or manifold topology and require specific data access patterns to compensate for slow random access. Since the VDB data structure is fundamentally hierarchical, it also facilitates adaptive grid sampling, and the inherent acceleration structure leads to fast algorithms that are well-suited for simulations. As such, VDB has proven useful for several applications that call for large, sparse, animated volumes, for example, level set dynamics and cloud modeling. In this article, we showcase some of these algorithms and compare VDB with existing, state-of-the-art data structures.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Clouds</subject><subject>Computational methods in fluid dynamics</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Data structures</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Physics</subject><subject>Random access</subject><subject>Sampling</subject><subject>Software</subject><subject>Three dimensional</subject><subject>Topology</subject><issn>0730-0301</issn><issn>1557-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LwzAAxYMoOKdnr70IXrrls0m96aZOGAg6dw1ZPrZI29SkQ_bfW13x9Hjw3u_wA-AawQlClE0xFRxjMflLwk7ACDHGc04KcQpGkBOYQwLRObhI6RNCWFBajEC5nj_cZQu_3eVvNoVq3_nQZO-tislm677XNmXfvttl80Ojaq-zVWhDFbaHS3DmVJXs1ZBj8PH0uJot8uXr88vsfplrzESXGyrYplQUUmKYtQJhhLi2HBpMmeFMU0E3nCNliHDUlcxtjNUKl0UplOOGjMHtkdvG8LW3qZO1T9pWlWps2CeJCo5YgUoB--n0ONUxpBStk230tYoHiaD8lSQHSXKQ1D9uBrhKWlUuqkb79H_DnPVgRsgPDURlGw</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>MUSETH, Ken</creator><general>Association for Computing Machinery</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130601</creationdate><title>VDB: High-Resolution Sparse Volumes with Dynamic Topology</title><author>MUSETH, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-d485b9a4043d5ee812117ce70d245d75c484b771ad38f4f95fbdeca29698af7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Clouds</topic><topic>Computational methods in fluid dynamics</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Data structures</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Physics</topic><topic>Random access</topic><topic>Sampling</topic><topic>Software</topic><topic>Three dimensional</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MUSETH, Ken</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM transactions on graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MUSETH, Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VDB: High-Resolution Sparse Volumes with Dynamic Topology</atitle><jtitle>ACM transactions on graphics</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>32</volume><issue>3</issue><spage>1</spage><epage>22</epage><pages>1-22</pages><issn>0730-0301</issn><eissn>1557-7368</eissn><abstract>We have developed a novel hierarchical data structure for the efficient representation of sparse, time-varying volumetric data discretized on a 3D grid. Our “VDB”, so named because it is a Volumetric, Dynamic grid that shares several characteristics with B+trees, exploits spatial coherency of time-varying data to separately and compactly encode data values and grid topology. VDB models a virtually infinite 3D index space that allows for cache-coherent and fast data access into sparse volumes of high resolution. It imposes no topology restrictions on the sparsity of the volumetric data, and it supports fast (average
O
(1)) random access patterns when the data are inserted, retrieved, or deleted. This is in contrast to most existing sparse volumetric data structures, which assume either static or manifold topology and require specific data access patterns to compensate for slow random access. Since the VDB data structure is fundamentally hierarchical, it also facilitates adaptive grid sampling, and the inherent acceleration structure leads to fast algorithms that are well-suited for simulations. As such, VDB has proven useful for several applications that call for large, sparse, animated volumes, for example, level set dynamics and cloud modeling. In this article, we showcase some of these algorithms and compare VDB with existing, state-of-the-art data structures.</abstract><cop>New York, NY</cop><pub>Association for Computing Machinery</pub><doi>10.1145/2487228.2487235</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-0301 |
ispartof | ACM transactions on graphics, 2013-06, Vol.32 (3), p.1-22 |
issn | 0730-0301 1557-7368 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671561980 |
source | ACM Digital Library Complete |
subjects | Algorithms Applied sciences Artificial intelligence Clouds Computational methods in fluid dynamics Computer science control theory systems Computer systems and distributed systems. User interface Data structures Dynamics Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Pattern recognition. Digital image processing. Computational geometry Physics Random access Sampling Software Three dimensional Topology |
title | VDB: High-Resolution Sparse Volumes with Dynamic Topology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A52%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VDB:%20High-Resolution%20Sparse%20Volumes%20with%20Dynamic%20Topology&rft.jtitle=ACM%20transactions%20on%20graphics&rft.au=MUSETH,%20Ken&rft.date=2013-06-01&rft.volume=32&rft.issue=3&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.issn=0730-0301&rft.eissn=1557-7368&rft_id=info:doi/10.1145/2487228.2487235&rft_dat=%3Cproquest_cross%3E1671561980%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671561980&rft_id=info:pmid/&rfr_iscdi=true |