VDB: High-Resolution Sparse Volumes with Dynamic Topology

We have developed a novel hierarchical data structure for the efficient representation of sparse, time-varying volumetric data discretized on a 3D grid. Our “VDB”, so named because it is a Volumetric, Dynamic grid that shares several characteristics with B+trees, exploits spatial coherency of time-v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on graphics 2013-06, Vol.32 (3), p.1-22
1. Verfasser: MUSETH, Ken
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue 3
container_start_page 1
container_title ACM transactions on graphics
container_volume 32
creator MUSETH, Ken
description We have developed a novel hierarchical data structure for the efficient representation of sparse, time-varying volumetric data discretized on a 3D grid. Our “VDB”, so named because it is a Volumetric, Dynamic grid that shares several characteristics with B+trees, exploits spatial coherency of time-varying data to separately and compactly encode data values and grid topology. VDB models a virtually infinite 3D index space that allows for cache-coherent and fast data access into sparse volumes of high resolution. It imposes no topology restrictions on the sparsity of the volumetric data, and it supports fast (average O (1)) random access patterns when the data are inserted, retrieved, or deleted. This is in contrast to most existing sparse volumetric data structures, which assume either static or manifold topology and require specific data access patterns to compensate for slow random access. Since the VDB data structure is fundamentally hierarchical, it also facilitates adaptive grid sampling, and the inherent acceleration structure leads to fast algorithms that are well-suited for simulations. As such, VDB has proven useful for several applications that call for large, sparse, animated volumes, for example, level set dynamics and cloud modeling. In this article, we showcase some of these algorithms and compare VDB with existing, state-of-the-art data structures.
doi_str_mv 10.1145/2487228.2487235
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671561980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671561980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-d485b9a4043d5ee812117ce70d245d75c484b771ad38f4f95fbdeca29698af7d3</originalsourceid><addsrcrecordid>eNo9kM1LwzAAxYMoOKdnr70IXrrls0m96aZOGAg6dw1ZPrZI29SkQ_bfW13x9Hjw3u_wA-AawQlClE0xFRxjMflLwk7ACDHGc04KcQpGkBOYQwLRObhI6RNCWFBajEC5nj_cZQu_3eVvNoVq3_nQZO-tislm677XNmXfvttl80Ojaq-zVWhDFbaHS3DmVJXs1ZBj8PH0uJot8uXr88vsfplrzESXGyrYplQUUmKYtQJhhLi2HBpMmeFMU0E3nCNliHDUlcxtjNUKl0UplOOGjMHtkdvG8LW3qZO1T9pWlWps2CeJCo5YgUoB--n0ONUxpBStk230tYoHiaD8lSQHSXKQ1D9uBrhKWlUuqkb79H_DnPVgRsgPDURlGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671561980</pqid></control><display><type>article</type><title>VDB: High-Resolution Sparse Volumes with Dynamic Topology</title><source>ACM Digital Library Complete</source><creator>MUSETH, Ken</creator><creatorcontrib>MUSETH, Ken</creatorcontrib><description>We have developed a novel hierarchical data structure for the efficient representation of sparse, time-varying volumetric data discretized on a 3D grid. Our “VDB”, so named because it is a Volumetric, Dynamic grid that shares several characteristics with B+trees, exploits spatial coherency of time-varying data to separately and compactly encode data values and grid topology. VDB models a virtually infinite 3D index space that allows for cache-coherent and fast data access into sparse volumes of high resolution. It imposes no topology restrictions on the sparsity of the volumetric data, and it supports fast (average O (1)) random access patterns when the data are inserted, retrieved, or deleted. This is in contrast to most existing sparse volumetric data structures, which assume either static or manifold topology and require specific data access patterns to compensate for slow random access. Since the VDB data structure is fundamentally hierarchical, it also facilitates adaptive grid sampling, and the inherent acceleration structure leads to fast algorithms that are well-suited for simulations. As such, VDB has proven useful for several applications that call for large, sparse, animated volumes, for example, level set dynamics and cloud modeling. In this article, we showcase some of these algorithms and compare VDB with existing, state-of-the-art data structures.</description><identifier>ISSN: 0730-0301</identifier><identifier>EISSN: 1557-7368</identifier><identifier>DOI: 10.1145/2487228.2487235</identifier><language>eng</language><publisher>New York, NY: Association for Computing Machinery</publisher><subject>Algorithms ; Applied sciences ; Artificial intelligence ; Clouds ; Computational methods in fluid dynamics ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Data structures ; Dynamics ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Pattern recognition. Digital image processing. Computational geometry ; Physics ; Random access ; Sampling ; Software ; Three dimensional ; Topology</subject><ispartof>ACM transactions on graphics, 2013-06, Vol.32 (3), p.1-22</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c258t-d485b9a4043d5ee812117ce70d245d75c484b771ad38f4f95fbdeca29698af7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27519853$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>MUSETH, Ken</creatorcontrib><title>VDB: High-Resolution Sparse Volumes with Dynamic Topology</title><title>ACM transactions on graphics</title><description>We have developed a novel hierarchical data structure for the efficient representation of sparse, time-varying volumetric data discretized on a 3D grid. Our “VDB”, so named because it is a Volumetric, Dynamic grid that shares several characteristics with B+trees, exploits spatial coherency of time-varying data to separately and compactly encode data values and grid topology. VDB models a virtually infinite 3D index space that allows for cache-coherent and fast data access into sparse volumes of high resolution. It imposes no topology restrictions on the sparsity of the volumetric data, and it supports fast (average O (1)) random access patterns when the data are inserted, retrieved, or deleted. This is in contrast to most existing sparse volumetric data structures, which assume either static or manifold topology and require specific data access patterns to compensate for slow random access. Since the VDB data structure is fundamentally hierarchical, it also facilitates adaptive grid sampling, and the inherent acceleration structure leads to fast algorithms that are well-suited for simulations. As such, VDB has proven useful for several applications that call for large, sparse, animated volumes, for example, level set dynamics and cloud modeling. In this article, we showcase some of these algorithms and compare VDB with existing, state-of-the-art data structures.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Clouds</subject><subject>Computational methods in fluid dynamics</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Data structures</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Physics</subject><subject>Random access</subject><subject>Sampling</subject><subject>Software</subject><subject>Three dimensional</subject><subject>Topology</subject><issn>0730-0301</issn><issn>1557-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LwzAAxYMoOKdnr70IXrrls0m96aZOGAg6dw1ZPrZI29SkQ_bfW13x9Hjw3u_wA-AawQlClE0xFRxjMflLwk7ACDHGc04KcQpGkBOYQwLRObhI6RNCWFBajEC5nj_cZQu_3eVvNoVq3_nQZO-tislm677XNmXfvttl80Ojaq-zVWhDFbaHS3DmVJXs1ZBj8PH0uJot8uXr88vsfplrzESXGyrYplQUUmKYtQJhhLi2HBpMmeFMU0E3nCNliHDUlcxtjNUKl0UplOOGjMHtkdvG8LW3qZO1T9pWlWps2CeJCo5YgUoB--n0ONUxpBStk230tYoHiaD8lSQHSXKQ1D9uBrhKWlUuqkb79H_DnPVgRsgPDURlGw</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>MUSETH, Ken</creator><general>Association for Computing Machinery</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130601</creationdate><title>VDB: High-Resolution Sparse Volumes with Dynamic Topology</title><author>MUSETH, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-d485b9a4043d5ee812117ce70d245d75c484b771ad38f4f95fbdeca29698af7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Clouds</topic><topic>Computational methods in fluid dynamics</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Data structures</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Physics</topic><topic>Random access</topic><topic>Sampling</topic><topic>Software</topic><topic>Three dimensional</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MUSETH, Ken</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM transactions on graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MUSETH, Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VDB: High-Resolution Sparse Volumes with Dynamic Topology</atitle><jtitle>ACM transactions on graphics</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>32</volume><issue>3</issue><spage>1</spage><epage>22</epage><pages>1-22</pages><issn>0730-0301</issn><eissn>1557-7368</eissn><abstract>We have developed a novel hierarchical data structure for the efficient representation of sparse, time-varying volumetric data discretized on a 3D grid. Our “VDB”, so named because it is a Volumetric, Dynamic grid that shares several characteristics with B+trees, exploits spatial coherency of time-varying data to separately and compactly encode data values and grid topology. VDB models a virtually infinite 3D index space that allows for cache-coherent and fast data access into sparse volumes of high resolution. It imposes no topology restrictions on the sparsity of the volumetric data, and it supports fast (average O (1)) random access patterns when the data are inserted, retrieved, or deleted. This is in contrast to most existing sparse volumetric data structures, which assume either static or manifold topology and require specific data access patterns to compensate for slow random access. Since the VDB data structure is fundamentally hierarchical, it also facilitates adaptive grid sampling, and the inherent acceleration structure leads to fast algorithms that are well-suited for simulations. As such, VDB has proven useful for several applications that call for large, sparse, animated volumes, for example, level set dynamics and cloud modeling. In this article, we showcase some of these algorithms and compare VDB with existing, state-of-the-art data structures.</abstract><cop>New York, NY</cop><pub>Association for Computing Machinery</pub><doi>10.1145/2487228.2487235</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0730-0301
ispartof ACM transactions on graphics, 2013-06, Vol.32 (3), p.1-22
issn 0730-0301
1557-7368
language eng
recordid cdi_proquest_miscellaneous_1671561980
source ACM Digital Library Complete
subjects Algorithms
Applied sciences
Artificial intelligence
Clouds
Computational methods in fluid dynamics
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Data structures
Dynamics
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Pattern recognition. Digital image processing. Computational geometry
Physics
Random access
Sampling
Software
Three dimensional
Topology
title VDB: High-Resolution Sparse Volumes with Dynamic Topology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A52%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VDB:%20High-Resolution%20Sparse%20Volumes%20with%20Dynamic%20Topology&rft.jtitle=ACM%20transactions%20on%20graphics&rft.au=MUSETH,%20Ken&rft.date=2013-06-01&rft.volume=32&rft.issue=3&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.issn=0730-0301&rft.eissn=1557-7368&rft_id=info:doi/10.1145/2487228.2487235&rft_dat=%3Cproquest_cross%3E1671561980%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671561980&rft_id=info:pmid/&rfr_iscdi=true