VDB: High-Resolution Sparse Volumes with Dynamic Topology

We have developed a novel hierarchical data structure for the efficient representation of sparse, time-varying volumetric data discretized on a 3D grid. Our “VDB”, so named because it is a Volumetric, Dynamic grid that shares several characteristics with B+trees, exploits spatial coherency of time-v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on graphics 2013-06, Vol.32 (3), p.1-22
1. Verfasser: MUSETH, Ken
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have developed a novel hierarchical data structure for the efficient representation of sparse, time-varying volumetric data discretized on a 3D grid. Our “VDB”, so named because it is a Volumetric, Dynamic grid that shares several characteristics with B+trees, exploits spatial coherency of time-varying data to separately and compactly encode data values and grid topology. VDB models a virtually infinite 3D index space that allows for cache-coherent and fast data access into sparse volumes of high resolution. It imposes no topology restrictions on the sparsity of the volumetric data, and it supports fast (average O (1)) random access patterns when the data are inserted, retrieved, or deleted. This is in contrast to most existing sparse volumetric data structures, which assume either static or manifold topology and require specific data access patterns to compensate for slow random access. Since the VDB data structure is fundamentally hierarchical, it also facilitates adaptive grid sampling, and the inherent acceleration structure leads to fast algorithms that are well-suited for simulations. As such, VDB has proven useful for several applications that call for large, sparse, animated volumes, for example, level set dynamics and cloud modeling. In this article, we showcase some of these algorithms and compare VDB with existing, state-of-the-art data structures.
ISSN:0730-0301
1557-7368
DOI:10.1145/2487228.2487235