D-ADMM: A Communication-Efficient Distributed Algorithm for Separable Optimization
We propose a distributed algorithm, named Distributed Alternating Direction Method of Multipliers (D-ADMM), for solving separable optimization problems in networks of interconnected nodes or agents. In a separable optimization problem there is a private cost function and a private constraint set at...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2013-05, Vol.61 (10), p.2718-2723 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2723 |
---|---|
container_issue | 10 |
container_start_page | 2718 |
container_title | IEEE transactions on signal processing |
container_volume | 61 |
creator | Mota, J. F. C. Xavier, J. M. F. Aguiar, P. M. Q. Puschel, M. |
description | We propose a distributed algorithm, named Distributed Alternating Direction Method of Multipliers (D-ADMM), for solving separable optimization problems in networks of interconnected nodes or agents. In a separable optimization problem there is a private cost function and a private constraint set at each node. The goal is to minimize the sum of all the cost functions, constraining the solution to be in the intersection of all the constraint sets. D-ADMM is proven to converge when the network is bipartite or when all the functions are strongly convex, although in practice, convergence is observed even when these conditions are not met. We use D-ADMM to solve the following problems from signal processing and control: average consensus, compressed sensing, and support vector machines. Our simulations show that D-ADMM requires less communications than state-of-the-art algorithms to achieve a given accuracy level. Algorithms with low communication requirements are important, for example, in sensor networks, where sensors are typically battery-operated and communicating is the most energy consuming operation. |
doi_str_mv | 10.1109/TSP.2013.2254478 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671561915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6484993</ieee_id><sourcerecordid>1671561915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-564499bcadf7dd3db3de041eee86946e43f7172b140ea235e4032cdf13d1c78c3</originalsourceid><addsrcrecordid>eNpdkM1LAzEQxRdRUKt3wcuCCF62ZjbJZuNtaesHVBRbwVvIZhON7EdNdg_615va0oOnGZjfe7x5UXQGaAyA-PVy8TxOEeBxmlJCWL4XHQEnkCDCsv2wI4oTmrO3w-jY-0-EgBCeHUUv06SYPj7exEU86ZpmaK2Sve3aZGaMVVa3fTy1vne2HHpdxUX93jnbfzSx6Vy80CvpZFnr-GnV28b-_ElPogMja69Pt3MUvd7OlpP7ZP509zAp5onClPQJzUICXipZGVZVuCpxpREBrXWecZJpgg0DlpZAkJYpppognKrKAK5AsVzhUXS18V257mvQvheN9UrXtWx1N3gBGQOaAQca0It_6Gc3uDakE4AJSzGHfE2hDaVc573TRqycbaT7FoDEumQRShbrksW25CC53BpLr2RtnGyV9TtdmhNOCcOBO99wNvy3O2ck3DnGvyvshCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1347239185</pqid></control><display><type>article</type><title>D-ADMM: A Communication-Efficient Distributed Algorithm for Separable Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Mota, J. F. C. ; Xavier, J. M. F. ; Aguiar, P. M. Q. ; Puschel, M.</creator><creatorcontrib>Mota, J. F. C. ; Xavier, J. M. F. ; Aguiar, P. M. Q. ; Puschel, M.</creatorcontrib><description>We propose a distributed algorithm, named Distributed Alternating Direction Method of Multipliers (D-ADMM), for solving separable optimization problems in networks of interconnected nodes or agents. In a separable optimization problem there is a private cost function and a private constraint set at each node. The goal is to minimize the sum of all the cost functions, constraining the solution to be in the intersection of all the constraint sets. D-ADMM is proven to converge when the network is bipartite or when all the functions are strongly convex, although in practice, convergence is observed even when these conditions are not met. We use D-ADMM to solve the following problems from signal processing and control: average consensus, compressed sensing, and support vector machines. Our simulations show that D-ADMM requires less communications than state-of-the-art algorithms to achieve a given accuracy level. Algorithms with low communication requirements are important, for example, in sensor networks, where sensors are typically battery-operated and communicating is the most energy consuming operation.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2013.2254478</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Alternating direction method of multipliers ; Applied sciences ; Color ; Computer simulation ; Constraining ; Convergence ; Cost function ; Detection, estimation, filtering, equalization, prediction ; Distributed algorithms ; Exact sciences and technology ; Image color analysis ; Information, signal and communications theory ; Networks ; Optimization ; Sampling, quantization ; sensor networks ; Sensors ; Signal and communications theory ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; Studies ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2013-05, Vol.61 (10), p.2718-2723</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-564499bcadf7dd3db3de041eee86946e43f7172b140ea235e4032cdf13d1c78c3</citedby><cites>FETCH-LOGICAL-c354t-564499bcadf7dd3db3de041eee86946e43f7172b140ea235e4032cdf13d1c78c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6484993$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6484993$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28495473$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mota, J. F. C.</creatorcontrib><creatorcontrib>Xavier, J. M. F.</creatorcontrib><creatorcontrib>Aguiar, P. M. Q.</creatorcontrib><creatorcontrib>Puschel, M.</creatorcontrib><title>D-ADMM: A Communication-Efficient Distributed Algorithm for Separable Optimization</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>We propose a distributed algorithm, named Distributed Alternating Direction Method of Multipliers (D-ADMM), for solving separable optimization problems in networks of interconnected nodes or agents. In a separable optimization problem there is a private cost function and a private constraint set at each node. The goal is to minimize the sum of all the cost functions, constraining the solution to be in the intersection of all the constraint sets. D-ADMM is proven to converge when the network is bipartite or when all the functions are strongly convex, although in practice, convergence is observed even when these conditions are not met. We use D-ADMM to solve the following problems from signal processing and control: average consensus, compressed sensing, and support vector machines. Our simulations show that D-ADMM requires less communications than state-of-the-art algorithms to achieve a given accuracy level. Algorithms with low communication requirements are important, for example, in sensor networks, where sensors are typically battery-operated and communicating is the most energy consuming operation.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Alternating direction method of multipliers</subject><subject>Applied sciences</subject><subject>Color</subject><subject>Computer simulation</subject><subject>Constraining</subject><subject>Convergence</subject><subject>Cost function</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Distributed algorithms</subject><subject>Exact sciences and technology</subject><subject>Image color analysis</subject><subject>Information, signal and communications theory</subject><subject>Networks</subject><subject>Optimization</subject><subject>Sampling, quantization</subject><subject>sensor networks</subject><subject>Sensors</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1LAzEQxRdRUKt3wcuCCF62ZjbJZuNtaesHVBRbwVvIZhON7EdNdg_615va0oOnGZjfe7x5UXQGaAyA-PVy8TxOEeBxmlJCWL4XHQEnkCDCsv2wI4oTmrO3w-jY-0-EgBCeHUUv06SYPj7exEU86ZpmaK2Sve3aZGaMVVa3fTy1vne2HHpdxUX93jnbfzSx6Vy80CvpZFnr-GnV28b-_ElPogMja69Pt3MUvd7OlpP7ZP509zAp5onClPQJzUICXipZGVZVuCpxpREBrXWecZJpgg0DlpZAkJYpppognKrKAK5AsVzhUXS18V257mvQvheN9UrXtWx1N3gBGQOaAQca0It_6Gc3uDakE4AJSzGHfE2hDaVc573TRqycbaT7FoDEumQRShbrksW25CC53BpLr2RtnGyV9TtdmhNOCcOBO99wNvy3O2ck3DnGvyvshCs</recordid><startdate>20130515</startdate><enddate>20130515</enddate><creator>Mota, J. F. C.</creator><creator>Xavier, J. M. F.</creator><creator>Aguiar, P. M. Q.</creator><creator>Puschel, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130515</creationdate><title>D-ADMM: A Communication-Efficient Distributed Algorithm for Separable Optimization</title><author>Mota, J. F. C. ; Xavier, J. M. F. ; Aguiar, P. M. Q. ; Puschel, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-564499bcadf7dd3db3de041eee86946e43f7172b140ea235e4032cdf13d1c78c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Alternating direction method of multipliers</topic><topic>Applied sciences</topic><topic>Color</topic><topic>Computer simulation</topic><topic>Constraining</topic><topic>Convergence</topic><topic>Cost function</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Distributed algorithms</topic><topic>Exact sciences and technology</topic><topic>Image color analysis</topic><topic>Information, signal and communications theory</topic><topic>Networks</topic><topic>Optimization</topic><topic>Sampling, quantization</topic><topic>sensor networks</topic><topic>Sensors</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mota, J. F. C.</creatorcontrib><creatorcontrib>Xavier, J. M. F.</creatorcontrib><creatorcontrib>Aguiar, P. M. Q.</creatorcontrib><creatorcontrib>Puschel, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mota, J. F. C.</au><au>Xavier, J. M. F.</au><au>Aguiar, P. M. Q.</au><au>Puschel, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>D-ADMM: A Communication-Efficient Distributed Algorithm for Separable Optimization</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2013-05-15</date><risdate>2013</risdate><volume>61</volume><issue>10</issue><spage>2718</spage><epage>2723</epage><pages>2718-2723</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>We propose a distributed algorithm, named Distributed Alternating Direction Method of Multipliers (D-ADMM), for solving separable optimization problems in networks of interconnected nodes or agents. In a separable optimization problem there is a private cost function and a private constraint set at each node. The goal is to minimize the sum of all the cost functions, constraining the solution to be in the intersection of all the constraint sets. D-ADMM is proven to converge when the network is bipartite or when all the functions are strongly convex, although in practice, convergence is observed even when these conditions are not met. We use D-ADMM to solve the following problems from signal processing and control: average consensus, compressed sensing, and support vector machines. Our simulations show that D-ADMM requires less communications than state-of-the-art algorithms to achieve a given accuracy level. Algorithms with low communication requirements are important, for example, in sensor networks, where sensors are typically battery-operated and communicating is the most energy consuming operation.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2013.2254478</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2013-05, Vol.61 (10), p.2718-2723 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671561915 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Algorithms Alternating direction method of multipliers Applied sciences Color Computer simulation Constraining Convergence Cost function Detection, estimation, filtering, equalization, prediction Distributed algorithms Exact sciences and technology Image color analysis Information, signal and communications theory Networks Optimization Sampling, quantization sensor networks Sensors Signal and communications theory Signal processing Signal representation. Spectral analysis Signal, noise Studies Telecommunications and information theory |
title | D-ADMM: A Communication-Efficient Distributed Algorithm for Separable Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=D-ADMM:%20A%20Communication-Efficient%20Distributed%20Algorithm%20for%20Separable%20Optimization&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Mota,%20J.%20F.%20C.&rft.date=2013-05-15&rft.volume=61&rft.issue=10&rft.spage=2718&rft.epage=2723&rft.pages=2718-2723&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2013.2254478&rft_dat=%3Cproquest_RIE%3E1671561915%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1347239185&rft_id=info:pmid/&rft_ieee_id=6484993&rfr_iscdi=true |