D-ADMM: A Communication-Efficient Distributed Algorithm for Separable Optimization

We propose a distributed algorithm, named Distributed Alternating Direction Method of Multipliers (D-ADMM), for solving separable optimization problems in networks of interconnected nodes or agents. In a separable optimization problem there is a private cost function and a private constraint set at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2013-05, Vol.61 (10), p.2718-2723
Hauptverfasser: Mota, J. F. C., Xavier, J. M. F., Aguiar, P. M. Q., Puschel, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2723
container_issue 10
container_start_page 2718
container_title IEEE transactions on signal processing
container_volume 61
creator Mota, J. F. C.
Xavier, J. M. F.
Aguiar, P. M. Q.
Puschel, M.
description We propose a distributed algorithm, named Distributed Alternating Direction Method of Multipliers (D-ADMM), for solving separable optimization problems in networks of interconnected nodes or agents. In a separable optimization problem there is a private cost function and a private constraint set at each node. The goal is to minimize the sum of all the cost functions, constraining the solution to be in the intersection of all the constraint sets. D-ADMM is proven to converge when the network is bipartite or when all the functions are strongly convex, although in practice, convergence is observed even when these conditions are not met. We use D-ADMM to solve the following problems from signal processing and control: average consensus, compressed sensing, and support vector machines. Our simulations show that D-ADMM requires less communications than state-of-the-art algorithms to achieve a given accuracy level. Algorithms with low communication requirements are important, for example, in sensor networks, where sensors are typically battery-operated and communicating is the most energy consuming operation.
doi_str_mv 10.1109/TSP.2013.2254478
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671561915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6484993</ieee_id><sourcerecordid>1671561915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-564499bcadf7dd3db3de041eee86946e43f7172b140ea235e4032cdf13d1c78c3</originalsourceid><addsrcrecordid>eNpdkM1LAzEQxRdRUKt3wcuCCF62ZjbJZuNtaesHVBRbwVvIZhON7EdNdg_615va0oOnGZjfe7x5UXQGaAyA-PVy8TxOEeBxmlJCWL4XHQEnkCDCsv2wI4oTmrO3w-jY-0-EgBCeHUUv06SYPj7exEU86ZpmaK2Sve3aZGaMVVa3fTy1vne2HHpdxUX93jnbfzSx6Vy80CvpZFnr-GnV28b-_ElPogMja69Pt3MUvd7OlpP7ZP509zAp5onClPQJzUICXipZGVZVuCpxpREBrXWecZJpgg0DlpZAkJYpppognKrKAK5AsVzhUXS18V257mvQvheN9UrXtWx1N3gBGQOaAQca0It_6Gc3uDakE4AJSzGHfE2hDaVc573TRqycbaT7FoDEumQRShbrksW25CC53BpLr2RtnGyV9TtdmhNOCcOBO99wNvy3O2ck3DnGvyvshCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1347239185</pqid></control><display><type>article</type><title>D-ADMM: A Communication-Efficient Distributed Algorithm for Separable Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Mota, J. F. C. ; Xavier, J. M. F. ; Aguiar, P. M. Q. ; Puschel, M.</creator><creatorcontrib>Mota, J. F. C. ; Xavier, J. M. F. ; Aguiar, P. M. Q. ; Puschel, M.</creatorcontrib><description>We propose a distributed algorithm, named Distributed Alternating Direction Method of Multipliers (D-ADMM), for solving separable optimization problems in networks of interconnected nodes or agents. In a separable optimization problem there is a private cost function and a private constraint set at each node. The goal is to minimize the sum of all the cost functions, constraining the solution to be in the intersection of all the constraint sets. D-ADMM is proven to converge when the network is bipartite or when all the functions are strongly convex, although in practice, convergence is observed even when these conditions are not met. We use D-ADMM to solve the following problems from signal processing and control: average consensus, compressed sensing, and support vector machines. Our simulations show that D-ADMM requires less communications than state-of-the-art algorithms to achieve a given accuracy level. Algorithms with low communication requirements are important, for example, in sensor networks, where sensors are typically battery-operated and communicating is the most energy consuming operation.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2013.2254478</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Alternating direction method of multipliers ; Applied sciences ; Color ; Computer simulation ; Constraining ; Convergence ; Cost function ; Detection, estimation, filtering, equalization, prediction ; Distributed algorithms ; Exact sciences and technology ; Image color analysis ; Information, signal and communications theory ; Networks ; Optimization ; Sampling, quantization ; sensor networks ; Sensors ; Signal and communications theory ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; Studies ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2013-05, Vol.61 (10), p.2718-2723</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-564499bcadf7dd3db3de041eee86946e43f7172b140ea235e4032cdf13d1c78c3</citedby><cites>FETCH-LOGICAL-c354t-564499bcadf7dd3db3de041eee86946e43f7172b140ea235e4032cdf13d1c78c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6484993$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6484993$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28495473$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mota, J. F. C.</creatorcontrib><creatorcontrib>Xavier, J. M. F.</creatorcontrib><creatorcontrib>Aguiar, P. M. Q.</creatorcontrib><creatorcontrib>Puschel, M.</creatorcontrib><title>D-ADMM: A Communication-Efficient Distributed Algorithm for Separable Optimization</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>We propose a distributed algorithm, named Distributed Alternating Direction Method of Multipliers (D-ADMM), for solving separable optimization problems in networks of interconnected nodes or agents. In a separable optimization problem there is a private cost function and a private constraint set at each node. The goal is to minimize the sum of all the cost functions, constraining the solution to be in the intersection of all the constraint sets. D-ADMM is proven to converge when the network is bipartite or when all the functions are strongly convex, although in practice, convergence is observed even when these conditions are not met. We use D-ADMM to solve the following problems from signal processing and control: average consensus, compressed sensing, and support vector machines. Our simulations show that D-ADMM requires less communications than state-of-the-art algorithms to achieve a given accuracy level. Algorithms with low communication requirements are important, for example, in sensor networks, where sensors are typically battery-operated and communicating is the most energy consuming operation.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Alternating direction method of multipliers</subject><subject>Applied sciences</subject><subject>Color</subject><subject>Computer simulation</subject><subject>Constraining</subject><subject>Convergence</subject><subject>Cost function</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Distributed algorithms</subject><subject>Exact sciences and technology</subject><subject>Image color analysis</subject><subject>Information, signal and communications theory</subject><subject>Networks</subject><subject>Optimization</subject><subject>Sampling, quantization</subject><subject>sensor networks</subject><subject>Sensors</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1LAzEQxRdRUKt3wcuCCF62ZjbJZuNtaesHVBRbwVvIZhON7EdNdg_615va0oOnGZjfe7x5UXQGaAyA-PVy8TxOEeBxmlJCWL4XHQEnkCDCsv2wI4oTmrO3w-jY-0-EgBCeHUUv06SYPj7exEU86ZpmaK2Sve3aZGaMVVa3fTy1vne2HHpdxUX93jnbfzSx6Vy80CvpZFnr-GnV28b-_ElPogMja69Pt3MUvd7OlpP7ZP509zAp5onClPQJzUICXipZGVZVuCpxpREBrXWecZJpgg0DlpZAkJYpppognKrKAK5AsVzhUXS18V257mvQvheN9UrXtWx1N3gBGQOaAQca0It_6Gc3uDakE4AJSzGHfE2hDaVc573TRqycbaT7FoDEumQRShbrksW25CC53BpLr2RtnGyV9TtdmhNOCcOBO99wNvy3O2ck3DnGvyvshCs</recordid><startdate>20130515</startdate><enddate>20130515</enddate><creator>Mota, J. F. C.</creator><creator>Xavier, J. M. F.</creator><creator>Aguiar, P. M. Q.</creator><creator>Puschel, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130515</creationdate><title>D-ADMM: A Communication-Efficient Distributed Algorithm for Separable Optimization</title><author>Mota, J. F. C. ; Xavier, J. M. F. ; Aguiar, P. M. Q. ; Puschel, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-564499bcadf7dd3db3de041eee86946e43f7172b140ea235e4032cdf13d1c78c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Alternating direction method of multipliers</topic><topic>Applied sciences</topic><topic>Color</topic><topic>Computer simulation</topic><topic>Constraining</topic><topic>Convergence</topic><topic>Cost function</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Distributed algorithms</topic><topic>Exact sciences and technology</topic><topic>Image color analysis</topic><topic>Information, signal and communications theory</topic><topic>Networks</topic><topic>Optimization</topic><topic>Sampling, quantization</topic><topic>sensor networks</topic><topic>Sensors</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mota, J. F. C.</creatorcontrib><creatorcontrib>Xavier, J. M. F.</creatorcontrib><creatorcontrib>Aguiar, P. M. Q.</creatorcontrib><creatorcontrib>Puschel, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mota, J. F. C.</au><au>Xavier, J. M. F.</au><au>Aguiar, P. M. Q.</au><au>Puschel, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>D-ADMM: A Communication-Efficient Distributed Algorithm for Separable Optimization</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2013-05-15</date><risdate>2013</risdate><volume>61</volume><issue>10</issue><spage>2718</spage><epage>2723</epage><pages>2718-2723</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>We propose a distributed algorithm, named Distributed Alternating Direction Method of Multipliers (D-ADMM), for solving separable optimization problems in networks of interconnected nodes or agents. In a separable optimization problem there is a private cost function and a private constraint set at each node. The goal is to minimize the sum of all the cost functions, constraining the solution to be in the intersection of all the constraint sets. D-ADMM is proven to converge when the network is bipartite or when all the functions are strongly convex, although in practice, convergence is observed even when these conditions are not met. We use D-ADMM to solve the following problems from signal processing and control: average consensus, compressed sensing, and support vector machines. Our simulations show that D-ADMM requires less communications than state-of-the-art algorithms to achieve a given accuracy level. Algorithms with low communication requirements are important, for example, in sensor networks, where sensors are typically battery-operated and communicating is the most energy consuming operation.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2013.2254478</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2013-05, Vol.61 (10), p.2718-2723
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_1671561915
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Alternating direction method of multipliers
Applied sciences
Color
Computer simulation
Constraining
Convergence
Cost function
Detection, estimation, filtering, equalization, prediction
Distributed algorithms
Exact sciences and technology
Image color analysis
Information, signal and communications theory
Networks
Optimization
Sampling, quantization
sensor networks
Sensors
Signal and communications theory
Signal processing
Signal representation. Spectral analysis
Signal, noise
Studies
Telecommunications and information theory
title D-ADMM: A Communication-Efficient Distributed Algorithm for Separable Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=D-ADMM:%20A%20Communication-Efficient%20Distributed%20Algorithm%20for%20Separable%20Optimization&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Mota,%20J.%20F.%20C.&rft.date=2013-05-15&rft.volume=61&rft.issue=10&rft.spage=2718&rft.epage=2723&rft.pages=2718-2723&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2013.2254478&rft_dat=%3Cproquest_RIE%3E1671561915%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1347239185&rft_id=info:pmid/&rft_ieee_id=6484993&rfr_iscdi=true