Data-based linear Gaussian state-space model for dynamic process monitoring

This article develops a data‐based linear Gaussian state‐space model for monitoring of dynamic processes under noisy environment. The Kalman filter is introduced for construction of the linear Gaussian state‐space model, and an iterative expectation‐maximization algorithm is used for model parameter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2012-12, Vol.58 (12), p.3763-3776
Hauptverfasser: Wen, Qiaojun, Ge, Zhiqiang, Song, Zhihuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3776
container_issue 12
container_start_page 3763
container_title AIChE journal
container_volume 58
creator Wen, Qiaojun
Ge, Zhiqiang
Song, Zhihuan
description This article develops a data‐based linear Gaussian state‐space model for monitoring of dynamic processes under noisy environment. The Kalman filter is introduced for construction of the linear Gaussian state‐space model, and an iterative expectation‐maximization algorithm is used for model parameters learning. With the incorporation of the dynamic data information, a new fault detection and identification approach is proposed. The feasibility and effectiveness of the two monitoring statistics in the new method are theoretically evaluated and further confirmed through two case studies. Furthermore, detailed fault smearing effect analysis of the proposed method is provided and compared with other identification methods. Based on the simulation results of two case studies, the superiority of the proposed method is explored. © 2012 American Institute of Chemical Engineers AIChE J, 2012
doi_str_mv 10.1002/aic.13776
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671559446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2813415011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4686-eb71a58392f8f18ed41ecc1d0bac653db3db644f403977cfa073b0be5208a0173</originalsourceid><addsrcrecordid>eNqFkU9r3DAQxUVpods0h34DQym0Bycay_rjY9i225CQXBL2KMbyuCj12luNl3a_fZVskkOhFARCo997vOEJ8Q7kCUhZnWIMJ6CsNS_EAnRtS91I_VIspJRQ5gG8Fm-Y7_Krsq5aiIvPOGPZIlNXDHEkTMUKd8wRx4JnnKnkLQYqNlNHQ9FPqej2I25iKLZpCsScf8Y4TymO39-KVz0OTMeP95G4_frlZvmtvLxenS_PLstQG2dKai2gdqqpeteDo64GCgE62WIwWnVtPqau-1qqxtrQo7SqlS3pSjqUYNWR-HjwzRF-7ohnv4kcaBhwpGnHHowFrZu6Nv9HK6csgFP36Pu_0Ltpl8a8iAfQkEOAcZn6dKBCmpgT9X6b4gbT3oP09w343IB_aCCzHx4dkQMOfcIxRH4WVMY47SqZudMD9ysOtP-3oT87Xz45lwdF5Jl-Pysw_fDGKqv9-mrlb1wj12t15VfqD0CHodE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1151073168</pqid></control><display><type>article</type><title>Data-based linear Gaussian state-space model for dynamic process monitoring</title><source>Access via Wiley Online Library</source><creator>Wen, Qiaojun ; Ge, Zhiqiang ; Song, Zhihuan</creator><creatorcontrib>Wen, Qiaojun ; Ge, Zhiqiang ; Song, Zhihuan</creatorcontrib><description>This article develops a data‐based linear Gaussian state‐space model for monitoring of dynamic processes under noisy environment. The Kalman filter is introduced for construction of the linear Gaussian state‐space model, and an iterative expectation‐maximization algorithm is used for model parameters learning. With the incorporation of the dynamic data information, a new fault detection and identification approach is proposed. The feasibility and effectiveness of the two monitoring statistics in the new method are theoretically evaluated and further confirmed through two case studies. Furthermore, detailed fault smearing effect analysis of the proposed method is provided and compared with other identification methods. Based on the simulation results of two case studies, the superiority of the proposed method is explored. © 2012 American Institute of Chemical Engineers AIChE J, 2012</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.13776</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Algorithms ; Applied sciences ; Chemical engineering ; Computer simulation ; dynamic ; Dynamics ; Exact sciences and technology ; fault detection ; fault detection, fault identification ; Fault diagnosis ; fault identification ; Faults ; Feasibility ; Gaussian ; Kalman filters ; Learning ; linear Gaussian state-space model ; Mathematical models ; Monitoring ; Monitoring systems ; Normal distribution ; probabilistic ; Safety ; Simulation ; Statistics</subject><ispartof>AIChE journal, 2012-12, Vol.58 (12), p.3763-3776</ispartof><rights>Copyright © 2012 American Institute of Chemical Engineers (AIChE)</rights><rights>2014 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Dec 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4686-eb71a58392f8f18ed41ecc1d0bac653db3db644f403977cfa073b0be5208a0173</citedby><cites>FETCH-LOGICAL-c4686-eb71a58392f8f18ed41ecc1d0bac653db3db644f403977cfa073b0be5208a0173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.13776$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.13776$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26685820$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wen, Qiaojun</creatorcontrib><creatorcontrib>Ge, Zhiqiang</creatorcontrib><creatorcontrib>Song, Zhihuan</creatorcontrib><title>Data-based linear Gaussian state-space model for dynamic process monitoring</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>This article develops a data‐based linear Gaussian state‐space model for monitoring of dynamic processes under noisy environment. The Kalman filter is introduced for construction of the linear Gaussian state‐space model, and an iterative expectation‐maximization algorithm is used for model parameters learning. With the incorporation of the dynamic data information, a new fault detection and identification approach is proposed. The feasibility and effectiveness of the two monitoring statistics in the new method are theoretically evaluated and further confirmed through two case studies. Furthermore, detailed fault smearing effect analysis of the proposed method is provided and compared with other identification methods. Based on the simulation results of two case studies, the superiority of the proposed method is explored. © 2012 American Institute of Chemical Engineers AIChE J, 2012</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Computer simulation</subject><subject>dynamic</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>fault detection</subject><subject>fault detection, fault identification</subject><subject>Fault diagnosis</subject><subject>fault identification</subject><subject>Faults</subject><subject>Feasibility</subject><subject>Gaussian</subject><subject>Kalman filters</subject><subject>Learning</subject><subject>linear Gaussian state-space model</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>Monitoring systems</subject><subject>Normal distribution</subject><subject>probabilistic</subject><subject>Safety</subject><subject>Simulation</subject><subject>Statistics</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkU9r3DAQxUVpods0h34DQym0Bycay_rjY9i225CQXBL2KMbyuCj12luNl3a_fZVskkOhFARCo997vOEJ8Q7kCUhZnWIMJ6CsNS_EAnRtS91I_VIspJRQ5gG8Fm-Y7_Krsq5aiIvPOGPZIlNXDHEkTMUKd8wRx4JnnKnkLQYqNlNHQ9FPqej2I25iKLZpCsScf8Y4TymO39-KVz0OTMeP95G4_frlZvmtvLxenS_PLstQG2dKai2gdqqpeteDo64GCgE62WIwWnVtPqau-1qqxtrQo7SqlS3pSjqUYNWR-HjwzRF-7ohnv4kcaBhwpGnHHowFrZu6Nv9HK6csgFP36Pu_0Ltpl8a8iAfQkEOAcZn6dKBCmpgT9X6b4gbT3oP09w343IB_aCCzHx4dkQMOfcIxRH4WVMY47SqZudMD9ysOtP-3oT87Xz45lwdF5Jl-Pysw_fDGKqv9-mrlb1wj12t15VfqD0CHodE</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Wen, Qiaojun</creator><creator>Ge, Zhiqiang</creator><creator>Song, Zhihuan</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>201212</creationdate><title>Data-based linear Gaussian state-space model for dynamic process monitoring</title><author>Wen, Qiaojun ; Ge, Zhiqiang ; Song, Zhihuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4686-eb71a58392f8f18ed41ecc1d0bac653db3db644f403977cfa073b0be5208a0173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Computer simulation</topic><topic>dynamic</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>fault detection</topic><topic>fault detection, fault identification</topic><topic>Fault diagnosis</topic><topic>fault identification</topic><topic>Faults</topic><topic>Feasibility</topic><topic>Gaussian</topic><topic>Kalman filters</topic><topic>Learning</topic><topic>linear Gaussian state-space model</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>Monitoring systems</topic><topic>Normal distribution</topic><topic>probabilistic</topic><topic>Safety</topic><topic>Simulation</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Qiaojun</creatorcontrib><creatorcontrib>Ge, Zhiqiang</creatorcontrib><creatorcontrib>Song, Zhihuan</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Qiaojun</au><au>Ge, Zhiqiang</au><au>Song, Zhihuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-based linear Gaussian state-space model for dynamic process monitoring</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2012-12</date><risdate>2012</risdate><volume>58</volume><issue>12</issue><spage>3763</spage><epage>3776</epage><pages>3763-3776</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>This article develops a data‐based linear Gaussian state‐space model for monitoring of dynamic processes under noisy environment. The Kalman filter is introduced for construction of the linear Gaussian state‐space model, and an iterative expectation‐maximization algorithm is used for model parameters learning. With the incorporation of the dynamic data information, a new fault detection and identification approach is proposed. The feasibility and effectiveness of the two monitoring statistics in the new method are theoretically evaluated and further confirmed through two case studies. Furthermore, detailed fault smearing effect analysis of the proposed method is provided and compared with other identification methods. Based on the simulation results of two case studies, the superiority of the proposed method is explored. © 2012 American Institute of Chemical Engineers AIChE J, 2012</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.13776</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2012-12, Vol.58 (12), p.3763-3776
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_miscellaneous_1671559446
source Access via Wiley Online Library
subjects Algorithms
Applied sciences
Chemical engineering
Computer simulation
dynamic
Dynamics
Exact sciences and technology
fault detection
fault detection, fault identification
Fault diagnosis
fault identification
Faults
Feasibility
Gaussian
Kalman filters
Learning
linear Gaussian state-space model
Mathematical models
Monitoring
Monitoring systems
Normal distribution
probabilistic
Safety
Simulation
Statistics
title Data-based linear Gaussian state-space model for dynamic process monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A43%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-based%20linear%20Gaussian%20state-space%20model%20for%20dynamic%20process%20monitoring&rft.jtitle=AIChE%20journal&rft.au=Wen,%20Qiaojun&rft.date=2012-12&rft.volume=58&rft.issue=12&rft.spage=3763&rft.epage=3776&rft.pages=3763-3776&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.13776&rft_dat=%3Cproquest_cross%3E2813415011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1151073168&rft_id=info:pmid/&rfr_iscdi=true