Self-preservation of methane hydrate revealed immediately below the eutectic temperature of the mother electrolyte solution
To elucidate the phenomenon of self-preservation of gas hydrates, the decomposition rates of methane hydrates prepared from dilute electrolyte solutions were measured while the temperature was increased from 233 to 273K at atmospheric pressure. Decomposition was significantly suppressed near the eut...
Gespeichert in:
Veröffentlicht in: | Chemical engineering science 2013-03, Vol.91, p.86-89 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 89 |
---|---|
container_issue | |
container_start_page | 86 |
container_title | Chemical engineering science |
container_volume | 91 |
creator | Sato, Hiroshi Sakamoto, Hiroya Ogino, Shotaro Mimachi, Hiroko Kinoshita, Takahiro Iwasaki, Toru Sano, Kenichi Ohgaki, Kazunari |
description | To elucidate the phenomenon of self-preservation of gas hydrates, the decomposition rates of methane hydrates prepared from dilute electrolyte solutions were measured while the temperature was increased from 233 to 273K at atmospheric pressure. Decomposition was significantly suppressed near the eutectic temperature (TE) of the electrolyte+water system. When the concentration of the electrolyte was relatively high, however, a transitory upsurge in the decomposition rate occurred at TE. We speculate that the presence of electrolyte crystals increases the mobility of water molecules. This promotes the formation of a contiguous layer of ice that acts as an obstacle to diffusion of methane. This mechanism becomes marked as the temperature increases. When the temperature exceeds TE, however, the occurrence of stable liquid causes local melting of the ice layer with attenuation of the barrier for methane diffusion.
► We study decomposition rate of methane hydrate prepared from electrolyte solutions. ► Decomposition is markedly suppressed immediately below the eutectic temperature. ► Mobile water phase derives a contiguous ice layer that suppresses decomposition. ► Stable liquid melts the ice layer and causes an upsurge in the decomposition rate. ► These findings conduct to a strong self-preservation technique. |
doi_str_mv | 10.1016/j.ces.2013.01.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671557264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250913000201</els_id><sourcerecordid>1671557264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-786749e7786c651c760a3b4dde8d6d06d2f8e8e7e24a8afb549869fde366a0e83</originalsourceid><addsrcrecordid>eNp9kE9rGzEQxUVpoG7SD9BTdexlHWlXf3bJKYQmDQRySHIWsjRby2gtV9K6mH75zOKeC4OGkd57Yn6EfOVszRlX17u1g7JuGe_WjGOJD2TFe901QjD5kawYY0PTSjZ8Ip9L2eGoNWcr8vcF4tgcMhTIR1tD2tM00gnq1u6Bbk8-2wo0wxFsBE_DNIEPeBVPdAMx_aF1CxTmCq4GRytMB0DHnGGJWd6mhGemEFGRUzxhWklxXn66IhejjQW-_OuX5O3-x-vdz-bp-eHx7vapcZ0UtdG90mIAjd0pyZ1WzHYb4T30XnmmfDv20IOGVtjejhsphl4No4dOKcug7y7J93PuIaffM5RqplAcxIgrprkYrjSXUrdKoJSfpS6nUjKM5pDDZPPJcGYW0GZnELRZQBvGsRbPt7NntMnYXzkU8_aCAomQ20FLjYqbswJwy2OAbIoLsHeIMiMW41P4T_47xDuSdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671557264</pqid></control><display><type>article</type><title>Self-preservation of methane hydrate revealed immediately below the eutectic temperature of the mother electrolyte solution</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Sato, Hiroshi ; Sakamoto, Hiroya ; Ogino, Shotaro ; Mimachi, Hiroko ; Kinoshita, Takahiro ; Iwasaki, Toru ; Sano, Kenichi ; Ohgaki, Kazunari</creator><creatorcontrib>Sato, Hiroshi ; Sakamoto, Hiroya ; Ogino, Shotaro ; Mimachi, Hiroko ; Kinoshita, Takahiro ; Iwasaki, Toru ; Sano, Kenichi ; Ohgaki, Kazunari</creatorcontrib><description>To elucidate the phenomenon of self-preservation of gas hydrates, the decomposition rates of methane hydrates prepared from dilute electrolyte solutions were measured while the temperature was increased from 233 to 273K at atmospheric pressure. Decomposition was significantly suppressed near the eutectic temperature (TE) of the electrolyte+water system. When the concentration of the electrolyte was relatively high, however, a transitory upsurge in the decomposition rate occurred at TE. We speculate that the presence of electrolyte crystals increases the mobility of water molecules. This promotes the formation of a contiguous layer of ice that acts as an obstacle to diffusion of methane. This mechanism becomes marked as the temperature increases. When the temperature exceeds TE, however, the occurrence of stable liquid causes local melting of the ice layer with attenuation of the barrier for methane diffusion.
► We study decomposition rate of methane hydrate prepared from electrolyte solutions. ► Decomposition is markedly suppressed immediately below the eutectic temperature. ► Mobile water phase derives a contiguous ice layer that suppresses decomposition. ► Stable liquid melts the ice layer and causes an upsurge in the decomposition rate. ► These findings conduct to a strong self-preservation technique.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2013.01.014</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>atmospheric pressure ; chemical engineering ; crystals ; Decomposition ; Diffusion ; Diffusion layers ; Electrolytes ; Eutectic temperature ; ice ; Kinetics ; melting ; Methane ; Methane hydrate ; Methane hydrates ; Multiphase reactions ; Obstacles ; Phase change ; Self-preservation ; Solutions ; temperature</subject><ispartof>Chemical engineering science, 2013-03, Vol.91, p.86-89</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-786749e7786c651c760a3b4dde8d6d06d2f8e8e7e24a8afb549869fde366a0e83</citedby><cites>FETCH-LOGICAL-c354t-786749e7786c651c760a3b4dde8d6d06d2f8e8e7e24a8afb549869fde366a0e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ces.2013.01.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sato, Hiroshi</creatorcontrib><creatorcontrib>Sakamoto, Hiroya</creatorcontrib><creatorcontrib>Ogino, Shotaro</creatorcontrib><creatorcontrib>Mimachi, Hiroko</creatorcontrib><creatorcontrib>Kinoshita, Takahiro</creatorcontrib><creatorcontrib>Iwasaki, Toru</creatorcontrib><creatorcontrib>Sano, Kenichi</creatorcontrib><creatorcontrib>Ohgaki, Kazunari</creatorcontrib><title>Self-preservation of methane hydrate revealed immediately below the eutectic temperature of the mother electrolyte solution</title><title>Chemical engineering science</title><description>To elucidate the phenomenon of self-preservation of gas hydrates, the decomposition rates of methane hydrates prepared from dilute electrolyte solutions were measured while the temperature was increased from 233 to 273K at atmospheric pressure. Decomposition was significantly suppressed near the eutectic temperature (TE) of the electrolyte+water system. When the concentration of the electrolyte was relatively high, however, a transitory upsurge in the decomposition rate occurred at TE. We speculate that the presence of electrolyte crystals increases the mobility of water molecules. This promotes the formation of a contiguous layer of ice that acts as an obstacle to diffusion of methane. This mechanism becomes marked as the temperature increases. When the temperature exceeds TE, however, the occurrence of stable liquid causes local melting of the ice layer with attenuation of the barrier for methane diffusion.
► We study decomposition rate of methane hydrate prepared from electrolyte solutions. ► Decomposition is markedly suppressed immediately below the eutectic temperature. ► Mobile water phase derives a contiguous ice layer that suppresses decomposition. ► Stable liquid melts the ice layer and causes an upsurge in the decomposition rate. ► These findings conduct to a strong self-preservation technique.</description><subject>atmospheric pressure</subject><subject>chemical engineering</subject><subject>crystals</subject><subject>Decomposition</subject><subject>Diffusion</subject><subject>Diffusion layers</subject><subject>Electrolytes</subject><subject>Eutectic temperature</subject><subject>ice</subject><subject>Kinetics</subject><subject>melting</subject><subject>Methane</subject><subject>Methane hydrate</subject><subject>Methane hydrates</subject><subject>Multiphase reactions</subject><subject>Obstacles</subject><subject>Phase change</subject><subject>Self-preservation</subject><subject>Solutions</subject><subject>temperature</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE9rGzEQxUVpoG7SD9BTdexlHWlXf3bJKYQmDQRySHIWsjRby2gtV9K6mH75zOKeC4OGkd57Yn6EfOVszRlX17u1g7JuGe_WjGOJD2TFe901QjD5kawYY0PTSjZ8Ip9L2eGoNWcr8vcF4tgcMhTIR1tD2tM00gnq1u6Bbk8-2wo0wxFsBE_DNIEPeBVPdAMx_aF1CxTmCq4GRytMB0DHnGGJWd6mhGemEFGRUzxhWklxXn66IhejjQW-_OuX5O3-x-vdz-bp-eHx7vapcZ0UtdG90mIAjd0pyZ1WzHYb4T30XnmmfDv20IOGVtjejhsphl4No4dOKcug7y7J93PuIaffM5RqplAcxIgrprkYrjSXUrdKoJSfpS6nUjKM5pDDZPPJcGYW0GZnELRZQBvGsRbPt7NntMnYXzkU8_aCAomQ20FLjYqbswJwy2OAbIoLsHeIMiMW41P4T_47xDuSdg</recordid><startdate>20130322</startdate><enddate>20130322</enddate><creator>Sato, Hiroshi</creator><creator>Sakamoto, Hiroya</creator><creator>Ogino, Shotaro</creator><creator>Mimachi, Hiroko</creator><creator>Kinoshita, Takahiro</creator><creator>Iwasaki, Toru</creator><creator>Sano, Kenichi</creator><creator>Ohgaki, Kazunari</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20130322</creationdate><title>Self-preservation of methane hydrate revealed immediately below the eutectic temperature of the mother electrolyte solution</title><author>Sato, Hiroshi ; Sakamoto, Hiroya ; Ogino, Shotaro ; Mimachi, Hiroko ; Kinoshita, Takahiro ; Iwasaki, Toru ; Sano, Kenichi ; Ohgaki, Kazunari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-786749e7786c651c760a3b4dde8d6d06d2f8e8e7e24a8afb549869fde366a0e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>atmospheric pressure</topic><topic>chemical engineering</topic><topic>crystals</topic><topic>Decomposition</topic><topic>Diffusion</topic><topic>Diffusion layers</topic><topic>Electrolytes</topic><topic>Eutectic temperature</topic><topic>ice</topic><topic>Kinetics</topic><topic>melting</topic><topic>Methane</topic><topic>Methane hydrate</topic><topic>Methane hydrates</topic><topic>Multiphase reactions</topic><topic>Obstacles</topic><topic>Phase change</topic><topic>Self-preservation</topic><topic>Solutions</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sato, Hiroshi</creatorcontrib><creatorcontrib>Sakamoto, Hiroya</creatorcontrib><creatorcontrib>Ogino, Shotaro</creatorcontrib><creatorcontrib>Mimachi, Hiroko</creatorcontrib><creatorcontrib>Kinoshita, Takahiro</creatorcontrib><creatorcontrib>Iwasaki, Toru</creatorcontrib><creatorcontrib>Sano, Kenichi</creatorcontrib><creatorcontrib>Ohgaki, Kazunari</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sato, Hiroshi</au><au>Sakamoto, Hiroya</au><au>Ogino, Shotaro</au><au>Mimachi, Hiroko</au><au>Kinoshita, Takahiro</au><au>Iwasaki, Toru</au><au>Sano, Kenichi</au><au>Ohgaki, Kazunari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-preservation of methane hydrate revealed immediately below the eutectic temperature of the mother electrolyte solution</atitle><jtitle>Chemical engineering science</jtitle><date>2013-03-22</date><risdate>2013</risdate><volume>91</volume><spage>86</spage><epage>89</epage><pages>86-89</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><abstract>To elucidate the phenomenon of self-preservation of gas hydrates, the decomposition rates of methane hydrates prepared from dilute electrolyte solutions were measured while the temperature was increased from 233 to 273K at atmospheric pressure. Decomposition was significantly suppressed near the eutectic temperature (TE) of the electrolyte+water system. When the concentration of the electrolyte was relatively high, however, a transitory upsurge in the decomposition rate occurred at TE. We speculate that the presence of electrolyte crystals increases the mobility of water molecules. This promotes the formation of a contiguous layer of ice that acts as an obstacle to diffusion of methane. This mechanism becomes marked as the temperature increases. When the temperature exceeds TE, however, the occurrence of stable liquid causes local melting of the ice layer with attenuation of the barrier for methane diffusion.
► We study decomposition rate of methane hydrate prepared from electrolyte solutions. ► Decomposition is markedly suppressed immediately below the eutectic temperature. ► Mobile water phase derives a contiguous ice layer that suppresses decomposition. ► Stable liquid melts the ice layer and causes an upsurge in the decomposition rate. ► These findings conduct to a strong self-preservation technique.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2013.01.014</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2509 |
ispartof | Chemical engineering science, 2013-03, Vol.91, p.86-89 |
issn | 0009-2509 1873-4405 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671557264 |
source | Elsevier ScienceDirect Journals Complete |
subjects | atmospheric pressure chemical engineering crystals Decomposition Diffusion Diffusion layers Electrolytes Eutectic temperature ice Kinetics melting Methane Methane hydrate Methane hydrates Multiphase reactions Obstacles Phase change Self-preservation Solutions temperature |
title | Self-preservation of methane hydrate revealed immediately below the eutectic temperature of the mother electrolyte solution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-preservation%20of%20methane%20hydrate%20revealed%20immediately%20below%20the%20eutectic%20temperature%20of%20the%20mother%20electrolyte%20solution&rft.jtitle=Chemical%20engineering%20science&rft.au=Sato,%20Hiroshi&rft.date=2013-03-22&rft.volume=91&rft.spage=86&rft.epage=89&rft.pages=86-89&rft.issn=0009-2509&rft.eissn=1873-4405&rft_id=info:doi/10.1016/j.ces.2013.01.014&rft_dat=%3Cproquest_cross%3E1671557264%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671557264&rft_id=info:pmid/&rft_els_id=S0009250913000201&rfr_iscdi=true |