Self-preservation of methane hydrate revealed immediately below the eutectic temperature of the mother electrolyte solution

To elucidate the phenomenon of self-preservation of gas hydrates, the decomposition rates of methane hydrates prepared from dilute electrolyte solutions were measured while the temperature was increased from 233 to 273K at atmospheric pressure. Decomposition was significantly suppressed near the eut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science 2013-03, Vol.91, p.86-89
Hauptverfasser: Sato, Hiroshi, Sakamoto, Hiroya, Ogino, Shotaro, Mimachi, Hiroko, Kinoshita, Takahiro, Iwasaki, Toru, Sano, Kenichi, Ohgaki, Kazunari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 89
container_issue
container_start_page 86
container_title Chemical engineering science
container_volume 91
creator Sato, Hiroshi
Sakamoto, Hiroya
Ogino, Shotaro
Mimachi, Hiroko
Kinoshita, Takahiro
Iwasaki, Toru
Sano, Kenichi
Ohgaki, Kazunari
description To elucidate the phenomenon of self-preservation of gas hydrates, the decomposition rates of methane hydrates prepared from dilute electrolyte solutions were measured while the temperature was increased from 233 to 273K at atmospheric pressure. Decomposition was significantly suppressed near the eutectic temperature (TE) of the electrolyte+water system. When the concentration of the electrolyte was relatively high, however, a transitory upsurge in the decomposition rate occurred at TE. We speculate that the presence of electrolyte crystals increases the mobility of water molecules. This promotes the formation of a contiguous layer of ice that acts as an obstacle to diffusion of methane. This mechanism becomes marked as the temperature increases. When the temperature exceeds TE, however, the occurrence of stable liquid causes local melting of the ice layer with attenuation of the barrier for methane diffusion. ► We study decomposition rate of methane hydrate prepared from electrolyte solutions. ► Decomposition is markedly suppressed immediately below the eutectic temperature. ► Mobile water phase derives a contiguous ice layer that suppresses decomposition. ► Stable liquid melts the ice layer and causes an upsurge in the decomposition rate. ► These findings conduct to a strong self-preservation technique.
doi_str_mv 10.1016/j.ces.2013.01.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671557264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250913000201</els_id><sourcerecordid>1671557264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-786749e7786c651c760a3b4dde8d6d06d2f8e8e7e24a8afb549869fde366a0e83</originalsourceid><addsrcrecordid>eNp9kE9rGzEQxUVpoG7SD9BTdexlHWlXf3bJKYQmDQRySHIWsjRby2gtV9K6mH75zOKeC4OGkd57Yn6EfOVszRlX17u1g7JuGe_WjGOJD2TFe901QjD5kawYY0PTSjZ8Ip9L2eGoNWcr8vcF4tgcMhTIR1tD2tM00gnq1u6Bbk8-2wo0wxFsBE_DNIEPeBVPdAMx_aF1CxTmCq4GRytMB0DHnGGJWd6mhGemEFGRUzxhWklxXn66IhejjQW-_OuX5O3-x-vdz-bp-eHx7vapcZ0UtdG90mIAjd0pyZ1WzHYb4T30XnmmfDv20IOGVtjejhsphl4No4dOKcug7y7J93PuIaffM5RqplAcxIgrprkYrjSXUrdKoJSfpS6nUjKM5pDDZPPJcGYW0GZnELRZQBvGsRbPt7NntMnYXzkU8_aCAomQ20FLjYqbswJwy2OAbIoLsHeIMiMW41P4T_47xDuSdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671557264</pqid></control><display><type>article</type><title>Self-preservation of methane hydrate revealed immediately below the eutectic temperature of the mother electrolyte solution</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Sato, Hiroshi ; Sakamoto, Hiroya ; Ogino, Shotaro ; Mimachi, Hiroko ; Kinoshita, Takahiro ; Iwasaki, Toru ; Sano, Kenichi ; Ohgaki, Kazunari</creator><creatorcontrib>Sato, Hiroshi ; Sakamoto, Hiroya ; Ogino, Shotaro ; Mimachi, Hiroko ; Kinoshita, Takahiro ; Iwasaki, Toru ; Sano, Kenichi ; Ohgaki, Kazunari</creatorcontrib><description>To elucidate the phenomenon of self-preservation of gas hydrates, the decomposition rates of methane hydrates prepared from dilute electrolyte solutions were measured while the temperature was increased from 233 to 273K at atmospheric pressure. Decomposition was significantly suppressed near the eutectic temperature (TE) of the electrolyte+water system. When the concentration of the electrolyte was relatively high, however, a transitory upsurge in the decomposition rate occurred at TE. We speculate that the presence of electrolyte crystals increases the mobility of water molecules. This promotes the formation of a contiguous layer of ice that acts as an obstacle to diffusion of methane. This mechanism becomes marked as the temperature increases. When the temperature exceeds TE, however, the occurrence of stable liquid causes local melting of the ice layer with attenuation of the barrier for methane diffusion. ► We study decomposition rate of methane hydrate prepared from electrolyte solutions. ► Decomposition is markedly suppressed immediately below the eutectic temperature. ► Mobile water phase derives a contiguous ice layer that suppresses decomposition. ► Stable liquid melts the ice layer and causes an upsurge in the decomposition rate. ► These findings conduct to a strong self-preservation technique.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2013.01.014</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>atmospheric pressure ; chemical engineering ; crystals ; Decomposition ; Diffusion ; Diffusion layers ; Electrolytes ; Eutectic temperature ; ice ; Kinetics ; melting ; Methane ; Methane hydrate ; Methane hydrates ; Multiphase reactions ; Obstacles ; Phase change ; Self-preservation ; Solutions ; temperature</subject><ispartof>Chemical engineering science, 2013-03, Vol.91, p.86-89</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-786749e7786c651c760a3b4dde8d6d06d2f8e8e7e24a8afb549869fde366a0e83</citedby><cites>FETCH-LOGICAL-c354t-786749e7786c651c760a3b4dde8d6d06d2f8e8e7e24a8afb549869fde366a0e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ces.2013.01.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sato, Hiroshi</creatorcontrib><creatorcontrib>Sakamoto, Hiroya</creatorcontrib><creatorcontrib>Ogino, Shotaro</creatorcontrib><creatorcontrib>Mimachi, Hiroko</creatorcontrib><creatorcontrib>Kinoshita, Takahiro</creatorcontrib><creatorcontrib>Iwasaki, Toru</creatorcontrib><creatorcontrib>Sano, Kenichi</creatorcontrib><creatorcontrib>Ohgaki, Kazunari</creatorcontrib><title>Self-preservation of methane hydrate revealed immediately below the eutectic temperature of the mother electrolyte solution</title><title>Chemical engineering science</title><description>To elucidate the phenomenon of self-preservation of gas hydrates, the decomposition rates of methane hydrates prepared from dilute electrolyte solutions were measured while the temperature was increased from 233 to 273K at atmospheric pressure. Decomposition was significantly suppressed near the eutectic temperature (TE) of the electrolyte+water system. When the concentration of the electrolyte was relatively high, however, a transitory upsurge in the decomposition rate occurred at TE. We speculate that the presence of electrolyte crystals increases the mobility of water molecules. This promotes the formation of a contiguous layer of ice that acts as an obstacle to diffusion of methane. This mechanism becomes marked as the temperature increases. When the temperature exceeds TE, however, the occurrence of stable liquid causes local melting of the ice layer with attenuation of the barrier for methane diffusion. ► We study decomposition rate of methane hydrate prepared from electrolyte solutions. ► Decomposition is markedly suppressed immediately below the eutectic temperature. ► Mobile water phase derives a contiguous ice layer that suppresses decomposition. ► Stable liquid melts the ice layer and causes an upsurge in the decomposition rate. ► These findings conduct to a strong self-preservation technique.</description><subject>atmospheric pressure</subject><subject>chemical engineering</subject><subject>crystals</subject><subject>Decomposition</subject><subject>Diffusion</subject><subject>Diffusion layers</subject><subject>Electrolytes</subject><subject>Eutectic temperature</subject><subject>ice</subject><subject>Kinetics</subject><subject>melting</subject><subject>Methane</subject><subject>Methane hydrate</subject><subject>Methane hydrates</subject><subject>Multiphase reactions</subject><subject>Obstacles</subject><subject>Phase change</subject><subject>Self-preservation</subject><subject>Solutions</subject><subject>temperature</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE9rGzEQxUVpoG7SD9BTdexlHWlXf3bJKYQmDQRySHIWsjRby2gtV9K6mH75zOKeC4OGkd57Yn6EfOVszRlX17u1g7JuGe_WjGOJD2TFe901QjD5kawYY0PTSjZ8Ip9L2eGoNWcr8vcF4tgcMhTIR1tD2tM00gnq1u6Bbk8-2wo0wxFsBE_DNIEPeBVPdAMx_aF1CxTmCq4GRytMB0DHnGGJWd6mhGemEFGRUzxhWklxXn66IhejjQW-_OuX5O3-x-vdz-bp-eHx7vapcZ0UtdG90mIAjd0pyZ1WzHYb4T30XnmmfDv20IOGVtjejhsphl4No4dOKcug7y7J93PuIaffM5RqplAcxIgrprkYrjSXUrdKoJSfpS6nUjKM5pDDZPPJcGYW0GZnELRZQBvGsRbPt7NntMnYXzkU8_aCAomQ20FLjYqbswJwy2OAbIoLsHeIMiMW41P4T_47xDuSdg</recordid><startdate>20130322</startdate><enddate>20130322</enddate><creator>Sato, Hiroshi</creator><creator>Sakamoto, Hiroya</creator><creator>Ogino, Shotaro</creator><creator>Mimachi, Hiroko</creator><creator>Kinoshita, Takahiro</creator><creator>Iwasaki, Toru</creator><creator>Sano, Kenichi</creator><creator>Ohgaki, Kazunari</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20130322</creationdate><title>Self-preservation of methane hydrate revealed immediately below the eutectic temperature of the mother electrolyte solution</title><author>Sato, Hiroshi ; Sakamoto, Hiroya ; Ogino, Shotaro ; Mimachi, Hiroko ; Kinoshita, Takahiro ; Iwasaki, Toru ; Sano, Kenichi ; Ohgaki, Kazunari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-786749e7786c651c760a3b4dde8d6d06d2f8e8e7e24a8afb549869fde366a0e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>atmospheric pressure</topic><topic>chemical engineering</topic><topic>crystals</topic><topic>Decomposition</topic><topic>Diffusion</topic><topic>Diffusion layers</topic><topic>Electrolytes</topic><topic>Eutectic temperature</topic><topic>ice</topic><topic>Kinetics</topic><topic>melting</topic><topic>Methane</topic><topic>Methane hydrate</topic><topic>Methane hydrates</topic><topic>Multiphase reactions</topic><topic>Obstacles</topic><topic>Phase change</topic><topic>Self-preservation</topic><topic>Solutions</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sato, Hiroshi</creatorcontrib><creatorcontrib>Sakamoto, Hiroya</creatorcontrib><creatorcontrib>Ogino, Shotaro</creatorcontrib><creatorcontrib>Mimachi, Hiroko</creatorcontrib><creatorcontrib>Kinoshita, Takahiro</creatorcontrib><creatorcontrib>Iwasaki, Toru</creatorcontrib><creatorcontrib>Sano, Kenichi</creatorcontrib><creatorcontrib>Ohgaki, Kazunari</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sato, Hiroshi</au><au>Sakamoto, Hiroya</au><au>Ogino, Shotaro</au><au>Mimachi, Hiroko</au><au>Kinoshita, Takahiro</au><au>Iwasaki, Toru</au><au>Sano, Kenichi</au><au>Ohgaki, Kazunari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-preservation of methane hydrate revealed immediately below the eutectic temperature of the mother electrolyte solution</atitle><jtitle>Chemical engineering science</jtitle><date>2013-03-22</date><risdate>2013</risdate><volume>91</volume><spage>86</spage><epage>89</epage><pages>86-89</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><abstract>To elucidate the phenomenon of self-preservation of gas hydrates, the decomposition rates of methane hydrates prepared from dilute electrolyte solutions were measured while the temperature was increased from 233 to 273K at atmospheric pressure. Decomposition was significantly suppressed near the eutectic temperature (TE) of the electrolyte+water system. When the concentration of the electrolyte was relatively high, however, a transitory upsurge in the decomposition rate occurred at TE. We speculate that the presence of electrolyte crystals increases the mobility of water molecules. This promotes the formation of a contiguous layer of ice that acts as an obstacle to diffusion of methane. This mechanism becomes marked as the temperature increases. When the temperature exceeds TE, however, the occurrence of stable liquid causes local melting of the ice layer with attenuation of the barrier for methane diffusion. ► We study decomposition rate of methane hydrate prepared from electrolyte solutions. ► Decomposition is markedly suppressed immediately below the eutectic temperature. ► Mobile water phase derives a contiguous ice layer that suppresses decomposition. ► Stable liquid melts the ice layer and causes an upsurge in the decomposition rate. ► These findings conduct to a strong self-preservation technique.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2013.01.014</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2013-03, Vol.91, p.86-89
issn 0009-2509
1873-4405
language eng
recordid cdi_proquest_miscellaneous_1671557264
source Elsevier ScienceDirect Journals Complete
subjects atmospheric pressure
chemical engineering
crystals
Decomposition
Diffusion
Diffusion layers
Electrolytes
Eutectic temperature
ice
Kinetics
melting
Methane
Methane hydrate
Methane hydrates
Multiphase reactions
Obstacles
Phase change
Self-preservation
Solutions
temperature
title Self-preservation of methane hydrate revealed immediately below the eutectic temperature of the mother electrolyte solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-preservation%20of%20methane%20hydrate%20revealed%20immediately%20below%20the%20eutectic%20temperature%20of%20the%20mother%20electrolyte%20solution&rft.jtitle=Chemical%20engineering%20science&rft.au=Sato,%20Hiroshi&rft.date=2013-03-22&rft.volume=91&rft.spage=86&rft.epage=89&rft.pages=86-89&rft.issn=0009-2509&rft.eissn=1873-4405&rft_id=info:doi/10.1016/j.ces.2013.01.014&rft_dat=%3Cproquest_cross%3E1671557264%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671557264&rft_id=info:pmid/&rft_els_id=S0009250913000201&rfr_iscdi=true