Liver Segmentation Technique for CT Images Based on Statistical Analysis

This article presented the automatic diagnosis of liver pathologies and its 3D volume rendering. The first and fundamental step in all these studies is the automatic liver segmentation, which is still an open problem. In this thesis, two automatic methods are described to segment the liver from abdo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of communication and computer 2014-03, Vol.11 (3), p.274-277
1. Verfasser: Khaled El-Sayed Ali Abdel Rahman Elsayed Sherif A. Sami Abdallah S. Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 277
container_issue 3
container_start_page 274
container_title Journal of communication and computer
container_volume 11
creator Khaled El-Sayed Ali Abdel Rahman Elsayed Sherif A. Sami Abdallah S. Ahmed
description This article presented the automatic diagnosis of liver pathologies and its 3D volume rendering. The first and fundamental step in all these studies is the automatic liver segmentation, which is still an open problem. In this thesis, two automatic methods are described to segment the liver from abdominal CT image data. The first step is image enhancement. Secondly, texture analysis is using standard statistical measures, finally it is a rough mask to segment the liver.
format Article
fullrecord <record><control><sourceid>proquest_chong</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671557091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>662022137</cqvip_id><sourcerecordid>1671557091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c601-f8e3d8d38a058dbd8930db172152086964d05d288607cd0bc3b4528594bad8f23</originalsourceid><addsrcrecordid>eNotj09LwzAchoMoOKffIXjyUvglaf70OIu6QcHDei9pknaRNt2aTti3N7Kd3vfw8PK8d2hFCgYZ4Zzdp85zlUkJxSN6ivEHgEtgcoW2lf91M967fnRh0YufAq6dOQR_OjvcTTMua7wbde8iftfRWZyA_T8YF2_0gDdBD5fo4zN66PQQ3cst16j-_KjLbVZ9f-3KTZUZASTrlGNWWaY0cGVbq5KibYmkhFNQohC5BW6pUgKksdAa1uacKl7krbaqo2yN3q6zx3lKhnFpRh-NGwYd3HSODREyPU4_SUJfr6g5TKE_-dA3x9mPer40QlCglDDJ_gCpHlTv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671557091</pqid></control><display><type>article</type><title>Liver Segmentation Technique for CT Images Based on Statistical Analysis</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Khaled El-Sayed Ali Abdel Rahman Elsayed Sherif A. Sami Abdallah S. Ahmed</creator><creatorcontrib>Khaled El-Sayed Ali Abdel Rahman Elsayed Sherif A. Sami Abdallah S. Ahmed</creatorcontrib><description>This article presented the automatic diagnosis of liver pathologies and its 3D volume rendering. The first and fundamental step in all these studies is the automatic liver segmentation, which is still an open problem. In this thesis, two automatic methods are described to segment the liver from abdominal CT image data. The first step is image enhancement. Secondly, texture analysis is using standard statistical measures, finally it is a rough mask to segment the liver.</description><identifier>ISSN: 1548-7709</identifier><identifier>EISSN: 1930-1553</identifier><language>eng</language><subject>Automation ; CT图像 ; Image enhancement ; Liver ; Segmentation ; Segments ; Surface layer ; Texture ; 分割技术 ; 图像增强 ; 图像数据 ; 统计分析 ; 统计方法 ; 肝脏 ; 自动诊断</subject><ispartof>Journal of communication and computer, 2014-03, Vol.11 (3), p.274-277</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/88584X/88584X.jpg</thumbnail><link.rule.ids>315,782,786</link.rule.ids></links><search><creatorcontrib>Khaled El-Sayed Ali Abdel Rahman Elsayed Sherif A. Sami Abdallah S. Ahmed</creatorcontrib><title>Liver Segmentation Technique for CT Images Based on Statistical Analysis</title><title>Journal of communication and computer</title><addtitle>Journal of Communication and Computer</addtitle><description>This article presented the automatic diagnosis of liver pathologies and its 3D volume rendering. The first and fundamental step in all these studies is the automatic liver segmentation, which is still an open problem. In this thesis, two automatic methods are described to segment the liver from abdominal CT image data. The first step is image enhancement. Secondly, texture analysis is using standard statistical measures, finally it is a rough mask to segment the liver.</description><subject>Automation</subject><subject>CT图像</subject><subject>Image enhancement</subject><subject>Liver</subject><subject>Segmentation</subject><subject>Segments</subject><subject>Surface layer</subject><subject>Texture</subject><subject>分割技术</subject><subject>图像增强</subject><subject>图像数据</subject><subject>统计分析</subject><subject>统计方法</subject><subject>肝脏</subject><subject>自动诊断</subject><issn>1548-7709</issn><issn>1930-1553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotj09LwzAchoMoOKffIXjyUvglaf70OIu6QcHDei9pknaRNt2aTti3N7Kd3vfw8PK8d2hFCgYZ4Zzdp85zlUkJxSN6ivEHgEtgcoW2lf91M967fnRh0YufAq6dOQR_OjvcTTMua7wbde8iftfRWZyA_T8YF2_0gDdBD5fo4zN66PQQ3cst16j-_KjLbVZ9f-3KTZUZASTrlGNWWaY0cGVbq5KibYmkhFNQohC5BW6pUgKksdAa1uacKl7krbaqo2yN3q6zx3lKhnFpRh-NGwYd3HSODREyPU4_SUJfr6g5TKE_-dA3x9mPer40QlCglDDJ_gCpHlTv</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Khaled El-Sayed Ali Abdel Rahman Elsayed Sherif A. Sami Abdallah S. Ahmed</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140301</creationdate><title>Liver Segmentation Technique for CT Images Based on Statistical Analysis</title><author>Khaled El-Sayed Ali Abdel Rahman Elsayed Sherif A. Sami Abdallah S. Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c601-f8e3d8d38a058dbd8930db172152086964d05d288607cd0bc3b4528594bad8f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Automation</topic><topic>CT图像</topic><topic>Image enhancement</topic><topic>Liver</topic><topic>Segmentation</topic><topic>Segments</topic><topic>Surface layer</topic><topic>Texture</topic><topic>分割技术</topic><topic>图像增强</topic><topic>图像数据</topic><topic>统计分析</topic><topic>统计方法</topic><topic>肝脏</topic><topic>自动诊断</topic><toplevel>online_resources</toplevel><creatorcontrib>Khaled El-Sayed Ali Abdel Rahman Elsayed Sherif A. Sami Abdallah S. Ahmed</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of communication and computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khaled El-Sayed Ali Abdel Rahman Elsayed Sherif A. Sami Abdallah S. Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liver Segmentation Technique for CT Images Based on Statistical Analysis</atitle><jtitle>Journal of communication and computer</jtitle><addtitle>Journal of Communication and Computer</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>11</volume><issue>3</issue><spage>274</spage><epage>277</epage><pages>274-277</pages><issn>1548-7709</issn><eissn>1930-1553</eissn><abstract>This article presented the automatic diagnosis of liver pathologies and its 3D volume rendering. The first and fundamental step in all these studies is the automatic liver segmentation, which is still an open problem. In this thesis, two automatic methods are described to segment the liver from abdominal CT image data. The first step is image enhancement. Secondly, texture analysis is using standard statistical measures, finally it is a rough mask to segment the liver.</abstract><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1548-7709
ispartof Journal of communication and computer, 2014-03, Vol.11 (3), p.274-277
issn 1548-7709
1930-1553
language eng
recordid cdi_proquest_miscellaneous_1671557091
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Automation
CT图像
Image enhancement
Liver
Segmentation
Segments
Surface layer
Texture
分割技术
图像增强
图像数据
统计分析
统计方法
肝脏
自动诊断
title Liver Segmentation Technique for CT Images Based on Statistical Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T14%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liver%20Segmentation%20Technique%20for%20CT%20Images%20Based%20on%20Statistical%20Analysis&rft.jtitle=Journal%20of%20communication%20and%20computer&rft.au=Khaled%20El-Sayed%20Ali%20Abdel%20Rahman%20Elsayed%20Sherif%20A.%20Sami%20Abdallah%20S.%20Ahmed&rft.date=2014-03-01&rft.volume=11&rft.issue=3&rft.spage=274&rft.epage=277&rft.pages=274-277&rft.issn=1548-7709&rft.eissn=1930-1553&rft_id=info:doi/&rft_dat=%3Cproquest_chong%3E1671557091%3C/proquest_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671557091&rft_id=info:pmid/&rft_cqvip_id=662022137&rfr_iscdi=true