Liver Segmentation Technique for CT Images Based on Statistical Analysis
This article presented the automatic diagnosis of liver pathologies and its 3D volume rendering. The first and fundamental step in all these studies is the automatic liver segmentation, which is still an open problem. In this thesis, two automatic methods are described to segment the liver from abdo...
Gespeichert in:
Veröffentlicht in: | Journal of communication and computer 2014-03, Vol.11 (3), p.274-277 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 277 |
---|---|
container_issue | 3 |
container_start_page | 274 |
container_title | Journal of communication and computer |
container_volume | 11 |
creator | Khaled El-Sayed Ali Abdel Rahman Elsayed Sherif A. Sami Abdallah S. Ahmed |
description | This article presented the automatic diagnosis of liver pathologies and its 3D volume rendering. The first and fundamental step in all these studies is the automatic liver segmentation, which is still an open problem. In this thesis, two automatic methods are described to segment the liver from abdominal CT image data. The first step is image enhancement. Secondly, texture analysis is using standard statistical measures, finally it is a rough mask to segment the liver. |
format | Article |
fullrecord | <record><control><sourceid>proquest_chong</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671557091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>662022137</cqvip_id><sourcerecordid>1671557091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c601-f8e3d8d38a058dbd8930db172152086964d05d288607cd0bc3b4528594bad8f23</originalsourceid><addsrcrecordid>eNotj09LwzAchoMoOKffIXjyUvglaf70OIu6QcHDei9pknaRNt2aTti3N7Kd3vfw8PK8d2hFCgYZ4Zzdp85zlUkJxSN6ivEHgEtgcoW2lf91M967fnRh0YufAq6dOQR_OjvcTTMua7wbde8iftfRWZyA_T8YF2_0gDdBD5fo4zN66PQQ3cst16j-_KjLbVZ9f-3KTZUZASTrlGNWWaY0cGVbq5KibYmkhFNQohC5BW6pUgKksdAa1uacKl7krbaqo2yN3q6zx3lKhnFpRh-NGwYd3HSODREyPU4_SUJfr6g5TKE_-dA3x9mPer40QlCglDDJ_gCpHlTv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671557091</pqid></control><display><type>article</type><title>Liver Segmentation Technique for CT Images Based on Statistical Analysis</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Khaled El-Sayed Ali Abdel Rahman Elsayed Sherif A. Sami Abdallah S. Ahmed</creator><creatorcontrib>Khaled El-Sayed Ali Abdel Rahman Elsayed Sherif A. Sami Abdallah S. Ahmed</creatorcontrib><description>This article presented the automatic diagnosis of liver pathologies and its 3D volume rendering. The first and fundamental step in all these studies is the automatic liver segmentation, which is still an open problem. In this thesis, two automatic methods are described to segment the liver from abdominal CT image data. The first step is image enhancement. Secondly, texture analysis is using standard statistical measures, finally it is a rough mask to segment the liver.</description><identifier>ISSN: 1548-7709</identifier><identifier>EISSN: 1930-1553</identifier><language>eng</language><subject>Automation ; CT图像 ; Image enhancement ; Liver ; Segmentation ; Segments ; Surface layer ; Texture ; 分割技术 ; 图像增强 ; 图像数据 ; 统计分析 ; 统计方法 ; 肝脏 ; 自动诊断</subject><ispartof>Journal of communication and computer, 2014-03, Vol.11 (3), p.274-277</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/88584X/88584X.jpg</thumbnail><link.rule.ids>315,782,786</link.rule.ids></links><search><creatorcontrib>Khaled El-Sayed Ali Abdel Rahman Elsayed Sherif A. Sami Abdallah S. Ahmed</creatorcontrib><title>Liver Segmentation Technique for CT Images Based on Statistical Analysis</title><title>Journal of communication and computer</title><addtitle>Journal of Communication and Computer</addtitle><description>This article presented the automatic diagnosis of liver pathologies and its 3D volume rendering. The first and fundamental step in all these studies is the automatic liver segmentation, which is still an open problem. In this thesis, two automatic methods are described to segment the liver from abdominal CT image data. The first step is image enhancement. Secondly, texture analysis is using standard statistical measures, finally it is a rough mask to segment the liver.</description><subject>Automation</subject><subject>CT图像</subject><subject>Image enhancement</subject><subject>Liver</subject><subject>Segmentation</subject><subject>Segments</subject><subject>Surface layer</subject><subject>Texture</subject><subject>分割技术</subject><subject>图像增强</subject><subject>图像数据</subject><subject>统计分析</subject><subject>统计方法</subject><subject>肝脏</subject><subject>自动诊断</subject><issn>1548-7709</issn><issn>1930-1553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotj09LwzAchoMoOKffIXjyUvglaf70OIu6QcHDei9pknaRNt2aTti3N7Kd3vfw8PK8d2hFCgYZ4Zzdp85zlUkJxSN6ivEHgEtgcoW2lf91M967fnRh0YufAq6dOQR_OjvcTTMua7wbde8iftfRWZyA_T8YF2_0gDdBD5fo4zN66PQQ3cst16j-_KjLbVZ9f-3KTZUZASTrlGNWWaY0cGVbq5KibYmkhFNQohC5BW6pUgKksdAa1uacKl7krbaqo2yN3q6zx3lKhnFpRh-NGwYd3HSODREyPU4_SUJfr6g5TKE_-dA3x9mPer40QlCglDDJ_gCpHlTv</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Khaled El-Sayed Ali Abdel Rahman Elsayed Sherif A. Sami Abdallah S. Ahmed</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140301</creationdate><title>Liver Segmentation Technique for CT Images Based on Statistical Analysis</title><author>Khaled El-Sayed Ali Abdel Rahman Elsayed Sherif A. Sami Abdallah S. Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c601-f8e3d8d38a058dbd8930db172152086964d05d288607cd0bc3b4528594bad8f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Automation</topic><topic>CT图像</topic><topic>Image enhancement</topic><topic>Liver</topic><topic>Segmentation</topic><topic>Segments</topic><topic>Surface layer</topic><topic>Texture</topic><topic>分割技术</topic><topic>图像增强</topic><topic>图像数据</topic><topic>统计分析</topic><topic>统计方法</topic><topic>肝脏</topic><topic>自动诊断</topic><toplevel>online_resources</toplevel><creatorcontrib>Khaled El-Sayed Ali Abdel Rahman Elsayed Sherif A. Sami Abdallah S. Ahmed</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of communication and computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khaled El-Sayed Ali Abdel Rahman Elsayed Sherif A. Sami Abdallah S. Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liver Segmentation Technique for CT Images Based on Statistical Analysis</atitle><jtitle>Journal of communication and computer</jtitle><addtitle>Journal of Communication and Computer</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>11</volume><issue>3</issue><spage>274</spage><epage>277</epage><pages>274-277</pages><issn>1548-7709</issn><eissn>1930-1553</eissn><abstract>This article presented the automatic diagnosis of liver pathologies and its 3D volume rendering. The first and fundamental step in all these studies is the automatic liver segmentation, which is still an open problem. In this thesis, two automatic methods are described to segment the liver from abdominal CT image data. The first step is image enhancement. Secondly, texture analysis is using standard statistical measures, finally it is a rough mask to segment the liver.</abstract><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7709 |
ispartof | Journal of communication and computer, 2014-03, Vol.11 (3), p.274-277 |
issn | 1548-7709 1930-1553 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671557091 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Automation CT图像 Image enhancement Liver Segmentation Segments Surface layer Texture 分割技术 图像增强 图像数据 统计分析 统计方法 肝脏 自动诊断 |
title | Liver Segmentation Technique for CT Images Based on Statistical Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T14%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liver%20Segmentation%20Technique%20for%20CT%20Images%20Based%20on%20Statistical%20Analysis&rft.jtitle=Journal%20of%20communication%20and%20computer&rft.au=Khaled%20El-Sayed%20Ali%20Abdel%20Rahman%20Elsayed%20Sherif%20A.%20Sami%20Abdallah%20S.%20Ahmed&rft.date=2014-03-01&rft.volume=11&rft.issue=3&rft.spage=274&rft.epage=277&rft.pages=274-277&rft.issn=1548-7709&rft.eissn=1930-1553&rft_id=info:doi/&rft_dat=%3Cproquest_chong%3E1671557091%3C/proquest_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671557091&rft_id=info:pmid/&rft_cqvip_id=662022137&rfr_iscdi=true |