A Riemannian View on Shape Optimization
Shape optimization based on the shape calculus is numerically mostly performed using steepest descent methods. This paper provides a novel framework for analyzing shape Newton optimization methods by exploiting a Riemannian perspective. A Riemannian shape Hessian is defined possessing often sought p...
Gespeichert in:
Veröffentlicht in: | Foundations of computational mathematics 2014-06, Vol.14 (3), p.483-501 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 501 |
---|---|
container_issue | 3 |
container_start_page | 483 |
container_title | Foundations of computational mathematics |
container_volume | 14 |
creator | Schulz, Volker H. |
description | Shape optimization based on the shape calculus is numerically mostly performed using steepest descent methods. This paper provides a novel framework for analyzing shape Newton optimization methods by exploiting a Riemannian perspective. A Riemannian shape Hessian is defined possessing often sought properties like symmetry and quadratic convergence for Newton optimization methods. |
doi_str_mv | 10.1007/s10208-014-9200-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671555983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A378103360</galeid><sourcerecordid>A378103360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-77a0e067e2a75f19dd4c3bd3bbf6b89ca7c472529f6aa5bd924c4a98ae035bd33</originalsourceid><addsrcrecordid>eNp10VtLwzAYBuAiCs7pD_Cu4IV6Uc2hadrLMTyBIMzDbfiafp0ZbTqTDg-_3oyJOpnkIgeeN4S8UXRIyRklRJ57ShjJE0LTpGCEJGIrGtCMioTznG9_r6XYjfa8nxFCRUHTQXQ8iicGW7DWgI2fDL7GnY3vn2GO8d28N635gN50dj_aqaHxePA1D6PHy4uH8XVye3d1Mx7dJjrN8z6REgiSTCIDKWpaVFWqeVnxsqyzMi80SJ1KJlhRZwCirAqW6hSKHJDwsOV8GJ2s7p277mWBvlet8RqbBix2C69oJqkQosiX9OgPnXULZ8PrFBWMZRlPqfxRU2hQGVt3vQO9vFSNuMwp4TwjQSUb1BQtOmg6i7UJx2v-bIMPo8LW6I2B07VAMD2-9VNYeK9u7ifrlq6sdp33Dms1d6YF964oUcu21aptFdpWy7aVCBm2yvhg7RTdr8_4N_QJYdSnPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1522663417</pqid></control><display><type>article</type><title>A Riemannian View on Shape Optimization</title><source>SpringerLink</source><creator>Schulz, Volker H.</creator><creatorcontrib>Schulz, Volker H.</creatorcontrib><description>Shape optimization based on the shape calculus is numerically mostly performed using steepest descent methods. This paper provides a novel framework for analyzing shape Newton optimization methods by exploiting a Riemannian perspective. A Riemannian shape Hessian is defined possessing often sought properties like symmetry and quadratic convergence for Newton optimization methods.</description><identifier>ISSN: 1615-3375</identifier><identifier>EISSN: 1615-3383</identifier><identifier>DOI: 10.1007/s10208-014-9200-5</identifier><identifier>CODEN: FCMOA3</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applications of Mathematics ; Calculus ; Computer Science ; Convergence ; Economics ; Foundations ; Linear and Multilinear Algebras ; Math Applications in Computer Science ; Mathematical analysis ; Mathematical models ; Mathematical optimization ; Mathematical research ; Mathematics ; Mathematics and Statistics ; Matrix Theory ; Numerical Analysis ; Optimization ; Optimization techniques ; Riemann integral ; Shape optimization ; Steepest descent method</subject><ispartof>Foundations of computational mathematics, 2014-06, Vol.14 (3), p.483-501</ispartof><rights>SFoCM 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-77a0e067e2a75f19dd4c3bd3bbf6b89ca7c472529f6aa5bd924c4a98ae035bd33</citedby><cites>FETCH-LOGICAL-c488t-77a0e067e2a75f19dd4c3bd3bbf6b89ca7c472529f6aa5bd924c4a98ae035bd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10208-014-9200-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10208-014-9200-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Schulz, Volker H.</creatorcontrib><title>A Riemannian View on Shape Optimization</title><title>Foundations of computational mathematics</title><addtitle>Found Comput Math</addtitle><description>Shape optimization based on the shape calculus is numerically mostly performed using steepest descent methods. This paper provides a novel framework for analyzing shape Newton optimization methods by exploiting a Riemannian perspective. A Riemannian shape Hessian is defined possessing often sought properties like symmetry and quadratic convergence for Newton optimization methods.</description><subject>Applications of Mathematics</subject><subject>Calculus</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Economics</subject><subject>Foundations</subject><subject>Linear and Multilinear Algebras</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical optimization</subject><subject>Mathematical research</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix Theory</subject><subject>Numerical Analysis</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Riemann integral</subject><subject>Shape optimization</subject><subject>Steepest descent method</subject><issn>1615-3375</issn><issn>1615-3383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp10VtLwzAYBuAiCs7pD_Cu4IV6Uc2hadrLMTyBIMzDbfiafp0ZbTqTDg-_3oyJOpnkIgeeN4S8UXRIyRklRJ57ShjJE0LTpGCEJGIrGtCMioTznG9_r6XYjfa8nxFCRUHTQXQ8iicGW7DWgI2fDL7GnY3vn2GO8d28N635gN50dj_aqaHxePA1D6PHy4uH8XVye3d1Mx7dJjrN8z6REgiSTCIDKWpaVFWqeVnxsqyzMi80SJ1KJlhRZwCirAqW6hSKHJDwsOV8GJ2s7p277mWBvlet8RqbBix2C69oJqkQosiX9OgPnXULZ8PrFBWMZRlPqfxRU2hQGVt3vQO9vFSNuMwp4TwjQSUb1BQtOmg6i7UJx2v-bIMPo8LW6I2B07VAMD2-9VNYeK9u7ifrlq6sdp33Dms1d6YF964oUcu21aptFdpWy7aVCBm2yvhg7RTdr8_4N_QJYdSnPw</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Schulz, Volker H.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140601</creationdate><title>A Riemannian View on Shape Optimization</title><author>Schulz, Volker H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-77a0e067e2a75f19dd4c3bd3bbf6b89ca7c472529f6aa5bd924c4a98ae035bd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applications of Mathematics</topic><topic>Calculus</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Economics</topic><topic>Foundations</topic><topic>Linear and Multilinear Algebras</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical optimization</topic><topic>Mathematical research</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix Theory</topic><topic>Numerical Analysis</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Riemann integral</topic><topic>Shape optimization</topic><topic>Steepest descent method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schulz, Volker H.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Foundations of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schulz, Volker H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Riemannian View on Shape Optimization</atitle><jtitle>Foundations of computational mathematics</jtitle><stitle>Found Comput Math</stitle><date>2014-06-01</date><risdate>2014</risdate><volume>14</volume><issue>3</issue><spage>483</spage><epage>501</epage><pages>483-501</pages><issn>1615-3375</issn><eissn>1615-3383</eissn><coden>FCMOA3</coden><abstract>Shape optimization based on the shape calculus is numerically mostly performed using steepest descent methods. This paper provides a novel framework for analyzing shape Newton optimization methods by exploiting a Riemannian perspective. A Riemannian shape Hessian is defined possessing often sought properties like symmetry and quadratic convergence for Newton optimization methods.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10208-014-9200-5</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-3375 |
ispartof | Foundations of computational mathematics, 2014-06, Vol.14 (3), p.483-501 |
issn | 1615-3375 1615-3383 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671555983 |
source | SpringerLink |
subjects | Applications of Mathematics Calculus Computer Science Convergence Economics Foundations Linear and Multilinear Algebras Math Applications in Computer Science Mathematical analysis Mathematical models Mathematical optimization Mathematical research Mathematics Mathematics and Statistics Matrix Theory Numerical Analysis Optimization Optimization techniques Riemann integral Shape optimization Steepest descent method |
title | A Riemannian View on Shape Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T20%3A31%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Riemannian%20View%20on%20Shape%20Optimization&rft.jtitle=Foundations%20of%20computational%20mathematics&rft.au=Schulz,%20Volker%20H.&rft.date=2014-06-01&rft.volume=14&rft.issue=3&rft.spage=483&rft.epage=501&rft.pages=483-501&rft.issn=1615-3375&rft.eissn=1615-3383&rft.coden=FCMOA3&rft_id=info:doi/10.1007/s10208-014-9200-5&rft_dat=%3Cgale_proqu%3EA378103360%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1522663417&rft_id=info:pmid/&rft_galeid=A378103360&rfr_iscdi=true |