A Riemannian View on Shape Optimization

Shape optimization based on the shape calculus is numerically mostly performed using steepest descent methods. This paper provides a novel framework for analyzing shape Newton optimization methods by exploiting a Riemannian perspective. A Riemannian shape Hessian is defined possessing often sought p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics 2014-06, Vol.14 (3), p.483-501
1. Verfasser: Schulz, Volker H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 501
container_issue 3
container_start_page 483
container_title Foundations of computational mathematics
container_volume 14
creator Schulz, Volker H.
description Shape optimization based on the shape calculus is numerically mostly performed using steepest descent methods. This paper provides a novel framework for analyzing shape Newton optimization methods by exploiting a Riemannian perspective. A Riemannian shape Hessian is defined possessing often sought properties like symmetry and quadratic convergence for Newton optimization methods.
doi_str_mv 10.1007/s10208-014-9200-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671555983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A378103360</galeid><sourcerecordid>A378103360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-77a0e067e2a75f19dd4c3bd3bbf6b89ca7c472529f6aa5bd924c4a98ae035bd33</originalsourceid><addsrcrecordid>eNp10VtLwzAYBuAiCs7pD_Cu4IV6Uc2hadrLMTyBIMzDbfiafp0ZbTqTDg-_3oyJOpnkIgeeN4S8UXRIyRklRJ57ShjJE0LTpGCEJGIrGtCMioTznG9_r6XYjfa8nxFCRUHTQXQ8iicGW7DWgI2fDL7GnY3vn2GO8d28N635gN50dj_aqaHxePA1D6PHy4uH8XVye3d1Mx7dJjrN8z6REgiSTCIDKWpaVFWqeVnxsqyzMi80SJ1KJlhRZwCirAqW6hSKHJDwsOV8GJ2s7p277mWBvlet8RqbBix2C69oJqkQosiX9OgPnXULZ8PrFBWMZRlPqfxRU2hQGVt3vQO9vFSNuMwp4TwjQSUb1BQtOmg6i7UJx2v-bIMPo8LW6I2B07VAMD2-9VNYeK9u7ifrlq6sdp33Dms1d6YF964oUcu21aptFdpWy7aVCBm2yvhg7RTdr8_4N_QJYdSnPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1522663417</pqid></control><display><type>article</type><title>A Riemannian View on Shape Optimization</title><source>SpringerLink</source><creator>Schulz, Volker H.</creator><creatorcontrib>Schulz, Volker H.</creatorcontrib><description>Shape optimization based on the shape calculus is numerically mostly performed using steepest descent methods. This paper provides a novel framework for analyzing shape Newton optimization methods by exploiting a Riemannian perspective. A Riemannian shape Hessian is defined possessing often sought properties like symmetry and quadratic convergence for Newton optimization methods.</description><identifier>ISSN: 1615-3375</identifier><identifier>EISSN: 1615-3383</identifier><identifier>DOI: 10.1007/s10208-014-9200-5</identifier><identifier>CODEN: FCMOA3</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applications of Mathematics ; Calculus ; Computer Science ; Convergence ; Economics ; Foundations ; Linear and Multilinear Algebras ; Math Applications in Computer Science ; Mathematical analysis ; Mathematical models ; Mathematical optimization ; Mathematical research ; Mathematics ; Mathematics and Statistics ; Matrix Theory ; Numerical Analysis ; Optimization ; Optimization techniques ; Riemann integral ; Shape optimization ; Steepest descent method</subject><ispartof>Foundations of computational mathematics, 2014-06, Vol.14 (3), p.483-501</ispartof><rights>SFoCM 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-77a0e067e2a75f19dd4c3bd3bbf6b89ca7c472529f6aa5bd924c4a98ae035bd33</citedby><cites>FETCH-LOGICAL-c488t-77a0e067e2a75f19dd4c3bd3bbf6b89ca7c472529f6aa5bd924c4a98ae035bd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10208-014-9200-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10208-014-9200-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Schulz, Volker H.</creatorcontrib><title>A Riemannian View on Shape Optimization</title><title>Foundations of computational mathematics</title><addtitle>Found Comput Math</addtitle><description>Shape optimization based on the shape calculus is numerically mostly performed using steepest descent methods. This paper provides a novel framework for analyzing shape Newton optimization methods by exploiting a Riemannian perspective. A Riemannian shape Hessian is defined possessing often sought properties like symmetry and quadratic convergence for Newton optimization methods.</description><subject>Applications of Mathematics</subject><subject>Calculus</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Economics</subject><subject>Foundations</subject><subject>Linear and Multilinear Algebras</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical optimization</subject><subject>Mathematical research</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix Theory</subject><subject>Numerical Analysis</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Riemann integral</subject><subject>Shape optimization</subject><subject>Steepest descent method</subject><issn>1615-3375</issn><issn>1615-3383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp10VtLwzAYBuAiCs7pD_Cu4IV6Uc2hadrLMTyBIMzDbfiafp0ZbTqTDg-_3oyJOpnkIgeeN4S8UXRIyRklRJ57ShjJE0LTpGCEJGIrGtCMioTznG9_r6XYjfa8nxFCRUHTQXQ8iicGW7DWgI2fDL7GnY3vn2GO8d28N635gN50dj_aqaHxePA1D6PHy4uH8XVye3d1Mx7dJjrN8z6REgiSTCIDKWpaVFWqeVnxsqyzMi80SJ1KJlhRZwCirAqW6hSKHJDwsOV8GJ2s7p277mWBvlet8RqbBix2C69oJqkQosiX9OgPnXULZ8PrFBWMZRlPqfxRU2hQGVt3vQO9vFSNuMwp4TwjQSUb1BQtOmg6i7UJx2v-bIMPo8LW6I2B07VAMD2-9VNYeK9u7ifrlq6sdp33Dms1d6YF964oUcu21aptFdpWy7aVCBm2yvhg7RTdr8_4N_QJYdSnPw</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Schulz, Volker H.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140601</creationdate><title>A Riemannian View on Shape Optimization</title><author>Schulz, Volker H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-77a0e067e2a75f19dd4c3bd3bbf6b89ca7c472529f6aa5bd924c4a98ae035bd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applications of Mathematics</topic><topic>Calculus</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Economics</topic><topic>Foundations</topic><topic>Linear and Multilinear Algebras</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical optimization</topic><topic>Mathematical research</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix Theory</topic><topic>Numerical Analysis</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Riemann integral</topic><topic>Shape optimization</topic><topic>Steepest descent method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schulz, Volker H.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Foundations of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schulz, Volker H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Riemannian View on Shape Optimization</atitle><jtitle>Foundations of computational mathematics</jtitle><stitle>Found Comput Math</stitle><date>2014-06-01</date><risdate>2014</risdate><volume>14</volume><issue>3</issue><spage>483</spage><epage>501</epage><pages>483-501</pages><issn>1615-3375</issn><eissn>1615-3383</eissn><coden>FCMOA3</coden><abstract>Shape optimization based on the shape calculus is numerically mostly performed using steepest descent methods. This paper provides a novel framework for analyzing shape Newton optimization methods by exploiting a Riemannian perspective. A Riemannian shape Hessian is defined possessing often sought properties like symmetry and quadratic convergence for Newton optimization methods.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10208-014-9200-5</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-3375
ispartof Foundations of computational mathematics, 2014-06, Vol.14 (3), p.483-501
issn 1615-3375
1615-3383
language eng
recordid cdi_proquest_miscellaneous_1671555983
source SpringerLink
subjects Applications of Mathematics
Calculus
Computer Science
Convergence
Economics
Foundations
Linear and Multilinear Algebras
Math Applications in Computer Science
Mathematical analysis
Mathematical models
Mathematical optimization
Mathematical research
Mathematics
Mathematics and Statistics
Matrix Theory
Numerical Analysis
Optimization
Optimization techniques
Riemann integral
Shape optimization
Steepest descent method
title A Riemannian View on Shape Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T20%3A31%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Riemannian%20View%20on%20Shape%20Optimization&rft.jtitle=Foundations%20of%20computational%20mathematics&rft.au=Schulz,%20Volker%20H.&rft.date=2014-06-01&rft.volume=14&rft.issue=3&rft.spage=483&rft.epage=501&rft.pages=483-501&rft.issn=1615-3375&rft.eissn=1615-3383&rft.coden=FCMOA3&rft_id=info:doi/10.1007/s10208-014-9200-5&rft_dat=%3Cgale_proqu%3EA378103360%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1522663417&rft_id=info:pmid/&rft_galeid=A378103360&rfr_iscdi=true