B-spline finite element method based on node moving adaptive refinement strategy

In this paper, an adaptive refinement procedure in conjunction with the B-spline finite element method is presented for the effective and efficient analysis of Euler–Bernoulli beam and planar elasticity problems. The B-spline plays a key role in the construction of stable wavelet on the interval, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Finite elements in analysis and design 2014-11, Vol.91, p.84-94
Hauptverfasser: Shen, Li, Liu, Zhangyi, Wu, Jiu Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 94
container_issue
container_start_page 84
container_title Finite elements in analysis and design
container_volume 91
creator Shen, Li
Liu, Zhangyi
Wu, Jiu Hui
description In this paper, an adaptive refinement procedure in conjunction with the B-spline finite element method is presented for the effective and efficient analysis of Euler–Bernoulli beam and planar elasticity problems. The B-spline plays a key role in the construction of stable wavelet on the interval, and there is actually no limitation for the interval. The spline elements are constructed in practical domain in this paper, and the spline bases concerns nodes distributed on the interval. As a result, the B-spline finite element method can be reconsidered as a meshless method. By repositioning the nodes of the spline bases, the accuracy of the method can be improved, and a simple node moving strategy is proposed to displace the nodal points to the areas indicated by the higher values of the error indicator. The efficiency and effectiveness of proposed B-spline finite element method and adaptive refinement technique are tested on some benchmark examples with the available analytical solutions and the results are presented. •A spline element method constructed in practical domain can be dealt with as a meshless method.•A simple node moving strategy is proposed to refine the nodal distribution.•The Euler–Bernoulli beam and planar elasticity problems have been solved efficiently.
doi_str_mv 10.1016/j.finel.2014.07.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671554917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168874X14001401</els_id><sourcerecordid>1671554917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-8d51dd54d7525f57998c0639fea0c78d85cba378367e38e650c648018336a2f03</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1g8siTYSfyRgQEqvqRKMIDEZrn2pbhK4mK7lfrvcVtmplue5727F6FrSkpKKL9dlZ0boS8rQpuSiJIQcYImVIqq4G3FTtEkU7KQovk6RxcxrgghrOLNBL0_FHHdZxnnBJcAQw8DjAkPkL69xQsdwWI_4tFbwIPfunGJtdXr5LaAA-z3HviYgk6w3F2is073Ea7-5hR9Pj1-zF6K-dvz6-x-Xpi65qmQllFrWWMFq1jHRNtKQ3jddqCJEdJKZha6FrLmAmoJnBHDG0mozLauOlJP0c0xdx38zwZiUoOLBvpej-A3UVEuKGNNS0VG6yNqgo8x36zWwQ067BQlat-fWqlDf2rfnyJC5f6ydXe0IH-xdRBUNA5GA9YFMElZ7_71fwHTDHnr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671554917</pqid></control><display><type>article</type><title>B-spline finite element method based on node moving adaptive refinement strategy</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Shen, Li ; Liu, Zhangyi ; Wu, Jiu Hui</creator><creatorcontrib>Shen, Li ; Liu, Zhangyi ; Wu, Jiu Hui</creatorcontrib><description>In this paper, an adaptive refinement procedure in conjunction with the B-spline finite element method is presented for the effective and efficient analysis of Euler–Bernoulli beam and planar elasticity problems. The B-spline plays a key role in the construction of stable wavelet on the interval, and there is actually no limitation for the interval. The spline elements are constructed in practical domain in this paper, and the spline bases concerns nodes distributed on the interval. As a result, the B-spline finite element method can be reconsidered as a meshless method. By repositioning the nodes of the spline bases, the accuracy of the method can be improved, and a simple node moving strategy is proposed to displace the nodal points to the areas indicated by the higher values of the error indicator. The efficiency and effectiveness of proposed B-spline finite element method and adaptive refinement technique are tested on some benchmark examples with the available analytical solutions and the results are presented. •A spline element method constructed in practical domain can be dealt with as a meshless method.•A simple node moving strategy is proposed to refine the nodal distribution.•The Euler–Bernoulli beam and planar elasticity problems have been solved efficiently.</description><identifier>ISSN: 0168-874X</identifier><identifier>EISSN: 1872-6925</identifier><identifier>DOI: 10.1016/j.finel.2014.07.007</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Adaptive refinement ; B-spline finite element method ; Construction ; Design engineering ; Elasticity problems ; Euler-Bernoulli beams ; Finite element method ; Intervals ; Mathematical analysis ; Node moving strategy ; Splines ; Strategy</subject><ispartof>Finite elements in analysis and design, 2014-11, Vol.91, p.84-94</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-8d51dd54d7525f57998c0639fea0c78d85cba378367e38e650c648018336a2f03</citedby><cites>FETCH-LOGICAL-c336t-8d51dd54d7525f57998c0639fea0c78d85cba378367e38e650c648018336a2f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.finel.2014.07.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Shen, Li</creatorcontrib><creatorcontrib>Liu, Zhangyi</creatorcontrib><creatorcontrib>Wu, Jiu Hui</creatorcontrib><title>B-spline finite element method based on node moving adaptive refinement strategy</title><title>Finite elements in analysis and design</title><description>In this paper, an adaptive refinement procedure in conjunction with the B-spline finite element method is presented for the effective and efficient analysis of Euler–Bernoulli beam and planar elasticity problems. The B-spline plays a key role in the construction of stable wavelet on the interval, and there is actually no limitation for the interval. The spline elements are constructed in practical domain in this paper, and the spline bases concerns nodes distributed on the interval. As a result, the B-spline finite element method can be reconsidered as a meshless method. By repositioning the nodes of the spline bases, the accuracy of the method can be improved, and a simple node moving strategy is proposed to displace the nodal points to the areas indicated by the higher values of the error indicator. The efficiency and effectiveness of proposed B-spline finite element method and adaptive refinement technique are tested on some benchmark examples with the available analytical solutions and the results are presented. •A spline element method constructed in practical domain can be dealt with as a meshless method.•A simple node moving strategy is proposed to refine the nodal distribution.•The Euler–Bernoulli beam and planar elasticity problems have been solved efficiently.</description><subject>Adaptive refinement</subject><subject>B-spline finite element method</subject><subject>Construction</subject><subject>Design engineering</subject><subject>Elasticity problems</subject><subject>Euler-Bernoulli beams</subject><subject>Finite element method</subject><subject>Intervals</subject><subject>Mathematical analysis</subject><subject>Node moving strategy</subject><subject>Splines</subject><subject>Strategy</subject><issn>0168-874X</issn><issn>1872-6925</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1g8siTYSfyRgQEqvqRKMIDEZrn2pbhK4mK7lfrvcVtmplue5727F6FrSkpKKL9dlZ0boS8rQpuSiJIQcYImVIqq4G3FTtEkU7KQovk6RxcxrgghrOLNBL0_FHHdZxnnBJcAQw8DjAkPkL69xQsdwWI_4tFbwIPfunGJtdXr5LaAA-z3HviYgk6w3F2is073Ea7-5hR9Pj1-zF6K-dvz6-x-Xpi65qmQllFrWWMFq1jHRNtKQ3jddqCJEdJKZha6FrLmAmoJnBHDG0mozLauOlJP0c0xdx38zwZiUoOLBvpej-A3UVEuKGNNS0VG6yNqgo8x36zWwQ067BQlat-fWqlDf2rfnyJC5f6ydXe0IH-xdRBUNA5GA9YFMElZ7_71fwHTDHnr</recordid><startdate>20141115</startdate><enddate>20141115</enddate><creator>Shen, Li</creator><creator>Liu, Zhangyi</creator><creator>Wu, Jiu Hui</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141115</creationdate><title>B-spline finite element method based on node moving adaptive refinement strategy</title><author>Shen, Li ; Liu, Zhangyi ; Wu, Jiu Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-8d51dd54d7525f57998c0639fea0c78d85cba378367e38e650c648018336a2f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptive refinement</topic><topic>B-spline finite element method</topic><topic>Construction</topic><topic>Design engineering</topic><topic>Elasticity problems</topic><topic>Euler-Bernoulli beams</topic><topic>Finite element method</topic><topic>Intervals</topic><topic>Mathematical analysis</topic><topic>Node moving strategy</topic><topic>Splines</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Li</creatorcontrib><creatorcontrib>Liu, Zhangyi</creatorcontrib><creatorcontrib>Wu, Jiu Hui</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Finite elements in analysis and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Li</au><au>Liu, Zhangyi</au><au>Wu, Jiu Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>B-spline finite element method based on node moving adaptive refinement strategy</atitle><jtitle>Finite elements in analysis and design</jtitle><date>2014-11-15</date><risdate>2014</risdate><volume>91</volume><spage>84</spage><epage>94</epage><pages>84-94</pages><issn>0168-874X</issn><eissn>1872-6925</eissn><abstract>In this paper, an adaptive refinement procedure in conjunction with the B-spline finite element method is presented for the effective and efficient analysis of Euler–Bernoulli beam and planar elasticity problems. The B-spline plays a key role in the construction of stable wavelet on the interval, and there is actually no limitation for the interval. The spline elements are constructed in practical domain in this paper, and the spline bases concerns nodes distributed on the interval. As a result, the B-spline finite element method can be reconsidered as a meshless method. By repositioning the nodes of the spline bases, the accuracy of the method can be improved, and a simple node moving strategy is proposed to displace the nodal points to the areas indicated by the higher values of the error indicator. The efficiency and effectiveness of proposed B-spline finite element method and adaptive refinement technique are tested on some benchmark examples with the available analytical solutions and the results are presented. •A spline element method constructed in practical domain can be dealt with as a meshless method.•A simple node moving strategy is proposed to refine the nodal distribution.•The Euler–Bernoulli beam and planar elasticity problems have been solved efficiently.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.finel.2014.07.007</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-874X
ispartof Finite elements in analysis and design, 2014-11, Vol.91, p.84-94
issn 0168-874X
1872-6925
language eng
recordid cdi_proquest_miscellaneous_1671554917
source Elsevier ScienceDirect Journals Complete
subjects Adaptive refinement
B-spline finite element method
Construction
Design engineering
Elasticity problems
Euler-Bernoulli beams
Finite element method
Intervals
Mathematical analysis
Node moving strategy
Splines
Strategy
title B-spline finite element method based on node moving adaptive refinement strategy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=B-spline%20finite%20element%20method%20based%20on%20node%20moving%20adaptive%20refinement%20strategy&rft.jtitle=Finite%20elements%20in%20analysis%20and%20design&rft.au=Shen,%20Li&rft.date=2014-11-15&rft.volume=91&rft.spage=84&rft.epage=94&rft.pages=84-94&rft.issn=0168-874X&rft.eissn=1872-6925&rft_id=info:doi/10.1016/j.finel.2014.07.007&rft_dat=%3Cproquest_cross%3E1671554917%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671554917&rft_id=info:pmid/&rft_els_id=S0168874X14001401&rfr_iscdi=true