Determination of amantadine in biological fluids using simultaneous derivatization and dispersive liquid–liquid microextraction followed by gas chromatography-flame ionization detection

•A simultaneous derivatization/DLLME method for extraction of amantadine is presented.•High EF and EnF are advantages of the method.•The proposed method has a low detection limit and a wide linear range.•The method shows relatively low matrices effects in the complex biological matrices. A one-step...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chromatography. B, Analytical technologies in the biomedical and life sciences Analytical technologies in the biomedical and life sciences, 2013-12, Vol.940, p.142-149
Hauptverfasser: Farajzadeh, Mir Ali, Nouri, Nina, Alizadeh Nabil, Ali Akbar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 149
container_issue
container_start_page 142
container_title Journal of chromatography. B, Analytical technologies in the biomedical and life sciences
container_volume 940
creator Farajzadeh, Mir Ali
Nouri, Nina
Alizadeh Nabil, Ali Akbar
description •A simultaneous derivatization/DLLME method for extraction of amantadine is presented.•High EF and EnF are advantages of the method.•The proposed method has a low detection limit and a wide linear range.•The method shows relatively low matrices effects in the complex biological matrices. A one-step derivatization and microextraction technique for the determination of amantadine in the human plasma and urine samples is presented. An appropriate mixture of methanol (disperser solvent), 1,2-dibromoethane (extraction solvent), and butylchloroformate (derivatization agent) is rapidly injected into samples. After centrifuging, the sedimented phase is analyzed by gas chromatography-flame ionization detection (GC-FID). The kind of extraction and disperser solvents and their volumes, amount of derivatization agent and reaction/extraction time which are effective in derivatization/dispersive liquid–liquid microextraction (DLLME) procedure are optimized. Under the optimal conditions, the enrichment factor (EF) of the target analyte was obtained to be 408 and 420, and limit of detection (LOD) 4.2 and 2.7ngmL−1, in plasma and urine respectively. The linear range is 14–5000 and 8.7–5000ng/mL for plasma and urine, respectively (squared correlation coefficient≥0.990). The relative recoveries obtained for the spiked plasma and urine samples are between 72% and 93%. Moreover, the inter- and intra-day precisions are acceptable at all spiked concentrations (relative standard deviation
doi_str_mv 10.1016/j.jchromb.2013.09.035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671554015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1570023213005266</els_id><sourcerecordid>1671554015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-58e3449b5969e9140a666c893374b168433b8cb56e7eb29bf5a54f4b9896d8073</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhSMEoqXwCICXbDLY8U-SFULlV6rEAiqxs-z4ZnpHTjy1k5ZhxTvwOLwNT4JnMmXblS35O8f3nlMUzxldMcrU681q013FMNhVRRlf0XZFuXxQnLKm5iWv1feH-S5rWtKKVyfFk5Q2lLKa1vxxcVKJ_CQrflr8eQcTxAFHM2EYSeiJGcw4GYcjEByJxeDDGjvjSe9ndInMCcc1STjMfjIjhDkRBxFvssHPxcSMjjhMW4gJb4B4vM7Cv79-LxcyYBcD_Jii6Q54H7wPt-CI3ZG1SeSwlpnCOprt1a7svRnyKGG8s3d54oPyafGoNz7Bs-N5Vlx-eP_t_FN58eXj5_O3F2UnqmoqZQNciNbKVrXQMkGNUqprWs5rYZlqBOe26axUUIOtWttLI0UvbNu0yjU5sLPi1eK7jeF6hjTpAVMH3i_ra6ZqJqWgTN6PCtFUVRbsXeWC5jRSitDrbcTBxJ1mVO8r1ht9rFjvK9a01bnirHtx_GK2A7j_qrtOM_ByAXoTtFlHTPrya3ZQlFK13ycTbxYCcmo3CFGnDmHswGHM0WoX8J4h_gGGN8pN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448221677</pqid></control><display><type>article</type><title>Determination of amantadine in biological fluids using simultaneous derivatization and dispersive liquid–liquid microextraction followed by gas chromatography-flame ionization detection</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Farajzadeh, Mir Ali ; Nouri, Nina ; Alizadeh Nabil, Ali Akbar</creator><creatorcontrib>Farajzadeh, Mir Ali ; Nouri, Nina ; Alizadeh Nabil, Ali Akbar</creatorcontrib><description>•A simultaneous derivatization/DLLME method for extraction of amantadine is presented.•High EF and EnF are advantages of the method.•The proposed method has a low detection limit and a wide linear range.•The method shows relatively low matrices effects in the complex biological matrices. A one-step derivatization and microextraction technique for the determination of amantadine in the human plasma and urine samples is presented. An appropriate mixture of methanol (disperser solvent), 1,2-dibromoethane (extraction solvent), and butylchloroformate (derivatization agent) is rapidly injected into samples. After centrifuging, the sedimented phase is analyzed by gas chromatography-flame ionization detection (GC-FID). The kind of extraction and disperser solvents and their volumes, amount of derivatization agent and reaction/extraction time which are effective in derivatization/dispersive liquid–liquid microextraction (DLLME) procedure are optimized. Under the optimal conditions, the enrichment factor (EF) of the target analyte was obtained to be 408 and 420, and limit of detection (LOD) 4.2 and 2.7ngmL−1, in plasma and urine respectively. The linear range is 14–5000 and 8.7–5000ng/mL for plasma and urine, respectively (squared correlation coefficient≥0.990). The relative recoveries obtained for the spiked plasma and urine samples are between 72% and 93%. Moreover, the inter- and intra-day precisions are acceptable at all spiked concentrations (relative standard deviation &lt;7%). Finally the method was successfully applied to determine amantadine in biological samples.</description><identifier>ISSN: 1570-0232</identifier><identifier>EISSN: 1873-376X</identifier><identifier>DOI: 10.1016/j.jchromb.2013.09.035</identifier><identifier>PMID: 24157523</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adult ; Aged ; Amantadine ; Amantadine - blood ; Amantadine - urine ; Biological ; Chromatography, Gas - methods ; Derivatization ; detection limit ; Dispersion ; Dispersive liquid–liquid microextraction ; Female ; Gas chromatography ; Humans ; Hydrogen-Ion Concentration ; Ionization ; Limit of Detection ; Liquid Phase Microextraction - methods ; Liquid-liquid extraction ; liquid-phase microextraction ; Male ; methanol ; Reproducibility of Results ; Solvents ; Urine</subject><ispartof>Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 2013-12, Vol.940, p.142-149</ispartof><rights>2013 Elsevier B.V.</rights><rights>Copyright © 2013 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-58e3449b5969e9140a666c893374b168433b8cb56e7eb29bf5a54f4b9896d8073</citedby><cites>FETCH-LOGICAL-c422t-58e3449b5969e9140a666c893374b168433b8cb56e7eb29bf5a54f4b9896d8073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jchromb.2013.09.035$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24157523$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Farajzadeh, Mir Ali</creatorcontrib><creatorcontrib>Nouri, Nina</creatorcontrib><creatorcontrib>Alizadeh Nabil, Ali Akbar</creatorcontrib><title>Determination of amantadine in biological fluids using simultaneous derivatization and dispersive liquid–liquid microextraction followed by gas chromatography-flame ionization detection</title><title>Journal of chromatography. B, Analytical technologies in the biomedical and life sciences</title><addtitle>J Chromatogr B Analyt Technol Biomed Life Sci</addtitle><description>•A simultaneous derivatization/DLLME method for extraction of amantadine is presented.•High EF and EnF are advantages of the method.•The proposed method has a low detection limit and a wide linear range.•The method shows relatively low matrices effects in the complex biological matrices. A one-step derivatization and microextraction technique for the determination of amantadine in the human plasma and urine samples is presented. An appropriate mixture of methanol (disperser solvent), 1,2-dibromoethane (extraction solvent), and butylchloroformate (derivatization agent) is rapidly injected into samples. After centrifuging, the sedimented phase is analyzed by gas chromatography-flame ionization detection (GC-FID). The kind of extraction and disperser solvents and their volumes, amount of derivatization agent and reaction/extraction time which are effective in derivatization/dispersive liquid–liquid microextraction (DLLME) procedure are optimized. Under the optimal conditions, the enrichment factor (EF) of the target analyte was obtained to be 408 and 420, and limit of detection (LOD) 4.2 and 2.7ngmL−1, in plasma and urine respectively. The linear range is 14–5000 and 8.7–5000ng/mL for plasma and urine, respectively (squared correlation coefficient≥0.990). The relative recoveries obtained for the spiked plasma and urine samples are between 72% and 93%. Moreover, the inter- and intra-day precisions are acceptable at all spiked concentrations (relative standard deviation &lt;7%). Finally the method was successfully applied to determine amantadine in biological samples.</description><subject>Adult</subject><subject>Aged</subject><subject>Amantadine</subject><subject>Amantadine - blood</subject><subject>Amantadine - urine</subject><subject>Biological</subject><subject>Chromatography, Gas - methods</subject><subject>Derivatization</subject><subject>detection limit</subject><subject>Dispersion</subject><subject>Dispersive liquid–liquid microextraction</subject><subject>Female</subject><subject>Gas chromatography</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ionization</subject><subject>Limit of Detection</subject><subject>Liquid Phase Microextraction - methods</subject><subject>Liquid-liquid extraction</subject><subject>liquid-phase microextraction</subject><subject>Male</subject><subject>methanol</subject><subject>Reproducibility of Results</subject><subject>Solvents</subject><subject>Urine</subject><issn>1570-0232</issn><issn>1873-376X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhSMEoqXwCICXbDLY8U-SFULlV6rEAiqxs-z4ZnpHTjy1k5ZhxTvwOLwNT4JnMmXblS35O8f3nlMUzxldMcrU681q013FMNhVRRlf0XZFuXxQnLKm5iWv1feH-S5rWtKKVyfFk5Q2lLKa1vxxcVKJ_CQrflr8eQcTxAFHM2EYSeiJGcw4GYcjEByJxeDDGjvjSe9ndInMCcc1STjMfjIjhDkRBxFvssHPxcSMjjhMW4gJb4B4vM7Cv79-LxcyYBcD_Jii6Q54H7wPt-CI3ZG1SeSwlpnCOprt1a7svRnyKGG8s3d54oPyafGoNz7Bs-N5Vlx-eP_t_FN58eXj5_O3F2UnqmoqZQNciNbKVrXQMkGNUqprWs5rYZlqBOe26axUUIOtWttLI0UvbNu0yjU5sLPi1eK7jeF6hjTpAVMH3i_ra6ZqJqWgTN6PCtFUVRbsXeWC5jRSitDrbcTBxJ1mVO8r1ht9rFjvK9a01bnirHtx_GK2A7j_qrtOM_ByAXoTtFlHTPrya3ZQlFK13ycTbxYCcmo3CFGnDmHswGHM0WoX8J4h_gGGN8pN</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Farajzadeh, Mir Ali</creator><creator>Nouri, Nina</creator><creator>Alizadeh Nabil, Ali Akbar</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20131201</creationdate><title>Determination of amantadine in biological fluids using simultaneous derivatization and dispersive liquid–liquid microextraction followed by gas chromatography-flame ionization detection</title><author>Farajzadeh, Mir Ali ; Nouri, Nina ; Alizadeh Nabil, Ali Akbar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-58e3449b5969e9140a666c893374b168433b8cb56e7eb29bf5a54f4b9896d8073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Amantadine</topic><topic>Amantadine - blood</topic><topic>Amantadine - urine</topic><topic>Biological</topic><topic>Chromatography, Gas - methods</topic><topic>Derivatization</topic><topic>detection limit</topic><topic>Dispersion</topic><topic>Dispersive liquid–liquid microextraction</topic><topic>Female</topic><topic>Gas chromatography</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ionization</topic><topic>Limit of Detection</topic><topic>Liquid Phase Microextraction - methods</topic><topic>Liquid-liquid extraction</topic><topic>liquid-phase microextraction</topic><topic>Male</topic><topic>methanol</topic><topic>Reproducibility of Results</topic><topic>Solvents</topic><topic>Urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farajzadeh, Mir Ali</creatorcontrib><creatorcontrib>Nouri, Nina</creatorcontrib><creatorcontrib>Alizadeh Nabil, Ali Akbar</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Journal of chromatography. B, Analytical technologies in the biomedical and life sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farajzadeh, Mir Ali</au><au>Nouri, Nina</au><au>Alizadeh Nabil, Ali Akbar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of amantadine in biological fluids using simultaneous derivatization and dispersive liquid–liquid microextraction followed by gas chromatography-flame ionization detection</atitle><jtitle>Journal of chromatography. B, Analytical technologies in the biomedical and life sciences</jtitle><addtitle>J Chromatogr B Analyt Technol Biomed Life Sci</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>940</volume><spage>142</spage><epage>149</epage><pages>142-149</pages><issn>1570-0232</issn><eissn>1873-376X</eissn><abstract>•A simultaneous derivatization/DLLME method for extraction of amantadine is presented.•High EF and EnF are advantages of the method.•The proposed method has a low detection limit and a wide linear range.•The method shows relatively low matrices effects in the complex biological matrices. A one-step derivatization and microextraction technique for the determination of amantadine in the human plasma and urine samples is presented. An appropriate mixture of methanol (disperser solvent), 1,2-dibromoethane (extraction solvent), and butylchloroformate (derivatization agent) is rapidly injected into samples. After centrifuging, the sedimented phase is analyzed by gas chromatography-flame ionization detection (GC-FID). The kind of extraction and disperser solvents and their volumes, amount of derivatization agent and reaction/extraction time which are effective in derivatization/dispersive liquid–liquid microextraction (DLLME) procedure are optimized. Under the optimal conditions, the enrichment factor (EF) of the target analyte was obtained to be 408 and 420, and limit of detection (LOD) 4.2 and 2.7ngmL−1, in plasma and urine respectively. The linear range is 14–5000 and 8.7–5000ng/mL for plasma and urine, respectively (squared correlation coefficient≥0.990). The relative recoveries obtained for the spiked plasma and urine samples are between 72% and 93%. Moreover, the inter- and intra-day precisions are acceptable at all spiked concentrations (relative standard deviation &lt;7%). Finally the method was successfully applied to determine amantadine in biological samples.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>24157523</pmid><doi>10.1016/j.jchromb.2013.09.035</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1570-0232
ispartof Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 2013-12, Vol.940, p.142-149
issn 1570-0232
1873-376X
language eng
recordid cdi_proquest_miscellaneous_1671554015
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE
subjects Adult
Aged
Amantadine
Amantadine - blood
Amantadine - urine
Biological
Chromatography, Gas - methods
Derivatization
detection limit
Dispersion
Dispersive liquid–liquid microextraction
Female
Gas chromatography
Humans
Hydrogen-Ion Concentration
Ionization
Limit of Detection
Liquid Phase Microextraction - methods
Liquid-liquid extraction
liquid-phase microextraction
Male
methanol
Reproducibility of Results
Solvents
Urine
title Determination of amantadine in biological fluids using simultaneous derivatization and dispersive liquid–liquid microextraction followed by gas chromatography-flame ionization detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A22%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20amantadine%20in%20biological%20fluids%20using%20simultaneous%20derivatization%20and%20dispersive%20liquid%E2%80%93liquid%20microextraction%20followed%20by%20gas%20chromatography-flame%20ionization%20detection&rft.jtitle=Journal%20of%20chromatography.%20B,%20Analytical%20technologies%20in%20the%20biomedical%20and%20life%20sciences&rft.au=Farajzadeh,%20Mir%20Ali&rft.date=2013-12-01&rft.volume=940&rft.spage=142&rft.epage=149&rft.pages=142-149&rft.issn=1570-0232&rft.eissn=1873-376X&rft_id=info:doi/10.1016/j.jchromb.2013.09.035&rft_dat=%3Cproquest_cross%3E1671554015%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448221677&rft_id=info:pmid/24157523&rft_els_id=S1570023213005266&rfr_iscdi=true