A random model of publication activity

We examine a random structure consisting of objects with positive weights and evolving in discrete time steps. It generalizes certain random graph models. We prove almost sure convergence for the weight distribution and show scale-free asymptotic behaviour. Martingale theory and renewal-like equatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2014-01, Vol.162, p.78-89
Hauptverfasser: Backhausz, Agnes, Mori, Tamas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 89
container_issue
container_start_page 78
container_title Discrete Applied Mathematics
container_volume 162
creator Backhausz, Agnes
Mori, Tamas
description We examine a random structure consisting of objects with positive weights and evolving in discrete time steps. It generalizes certain random graph models. We prove almost sure convergence for the weight distribution and show scale-free asymptotic behaviour. Martingale theory and renewal-like equations are used in the proofs.
doi_str_mv 10.1016/j.dam.2013.08.034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671552780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X13003752</els_id><sourcerecordid>1671552780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-c998fa157ba49b3504dc37de2975eb4980fc3fb5d74b96530508e231a94e30073</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG89iZfWSdM0CZ4W8QsWvCh4C2kyhSxtsybdhf33ZlnPnoaXed6BeQi5pVBRoO3DpnJmrGqgrAJZAWvOyIJKUZetEPScLDLTljWV35fkKqUNANCcFuRuVUQzuTAWY3A4FKEvtrtu8NbMPkyFsbPf-_lwTS56MyS8-ZtL8vXy_Pn0Vq4_Xt-fVuvSMsHm0iole0O56EyjOsahcXnhsFaCY9coCb1lfcedaDrVcgYcJNaMGtUgAxBsSe5Pd7cx_OwwzXr0yeIwmAnDLmnaCsp5LSRklJ5QG0NKEXu9jX408aAp6KMTvdHZiT460SB1dpI7j6cO5h_2HqNO1uNk0fmIdtYu-H_av5V1Z4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671552780</pqid></control><display><type>article</type><title>A random model of publication activity</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Backhausz, Agnes ; Mori, Tamas</creator><creatorcontrib>Backhausz, Agnes ; Mori, Tamas</creatorcontrib><description>We examine a random structure consisting of objects with positive weights and evolving in discrete time steps. It generalizes certain random graph models. We prove almost sure convergence for the weight distribution and show scale-free asymptotic behaviour. Martingale theory and renewal-like equations are used in the proofs.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2013.08.034</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Asymptotic properties ; Convergence ; Documents ; Graphs ; Martingales ; Mathematical analysis ; Mathematical models ; Proving ; Random graphs ; Renewal equation ; Scale free</subject><ispartof>Discrete Applied Mathematics, 2014-01, Vol.162, p.78-89</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-c998fa157ba49b3504dc37de2975eb4980fc3fb5d74b96530508e231a94e30073</citedby><cites>FETCH-LOGICAL-c373t-c998fa157ba49b3504dc37de2975eb4980fc3fb5d74b96530508e231a94e30073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0166218X13003752$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Backhausz, Agnes</creatorcontrib><creatorcontrib>Mori, Tamas</creatorcontrib><title>A random model of publication activity</title><title>Discrete Applied Mathematics</title><description>We examine a random structure consisting of objects with positive weights and evolving in discrete time steps. It generalizes certain random graph models. We prove almost sure convergence for the weight distribution and show scale-free asymptotic behaviour. Martingale theory and renewal-like equations are used in the proofs.</description><subject>Asymptotic properties</subject><subject>Convergence</subject><subject>Documents</subject><subject>Graphs</subject><subject>Martingales</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Proving</subject><subject>Random graphs</subject><subject>Renewal equation</subject><subject>Scale free</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG89iZfWSdM0CZ4W8QsWvCh4C2kyhSxtsybdhf33ZlnPnoaXed6BeQi5pVBRoO3DpnJmrGqgrAJZAWvOyIJKUZetEPScLDLTljWV35fkKqUNANCcFuRuVUQzuTAWY3A4FKEvtrtu8NbMPkyFsbPf-_lwTS56MyS8-ZtL8vXy_Pn0Vq4_Xt-fVuvSMsHm0iole0O56EyjOsahcXnhsFaCY9coCb1lfcedaDrVcgYcJNaMGtUgAxBsSe5Pd7cx_OwwzXr0yeIwmAnDLmnaCsp5LSRklJ5QG0NKEXu9jX408aAp6KMTvdHZiT460SB1dpI7j6cO5h_2HqNO1uNk0fmIdtYu-H_av5V1Z4w</recordid><startdate>20140110</startdate><enddate>20140110</enddate><creator>Backhausz, Agnes</creator><creator>Mori, Tamas</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140110</creationdate><title>A random model of publication activity</title><author>Backhausz, Agnes ; Mori, Tamas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-c998fa157ba49b3504dc37de2975eb4980fc3fb5d74b96530508e231a94e30073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Asymptotic properties</topic><topic>Convergence</topic><topic>Documents</topic><topic>Graphs</topic><topic>Martingales</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Proving</topic><topic>Random graphs</topic><topic>Renewal equation</topic><topic>Scale free</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Backhausz, Agnes</creatorcontrib><creatorcontrib>Mori, Tamas</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Backhausz, Agnes</au><au>Mori, Tamas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A random model of publication activity</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2014-01-10</date><risdate>2014</risdate><volume>162</volume><spage>78</spage><epage>89</epage><pages>78-89</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>We examine a random structure consisting of objects with positive weights and evolving in discrete time steps. It generalizes certain random graph models. We prove almost sure convergence for the weight distribution and show scale-free asymptotic behaviour. Martingale theory and renewal-like equations are used in the proofs.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2013.08.034</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2014-01, Vol.162, p.78-89
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_miscellaneous_1671552780
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Asymptotic properties
Convergence
Documents
Graphs
Martingales
Mathematical analysis
Mathematical models
Proving
Random graphs
Renewal equation
Scale free
title A random model of publication activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A05%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20random%20model%20of%20publication%20activity&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Backhausz,%20Agnes&rft.date=2014-01-10&rft.volume=162&rft.spage=78&rft.epage=89&rft.pages=78-89&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2013.08.034&rft_dat=%3Cproquest_cross%3E1671552780%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671552780&rft_id=info:pmid/&rft_els_id=S0166218X13003752&rfr_iscdi=true