A random model of publication activity
We examine a random structure consisting of objects with positive weights and evolving in discrete time steps. It generalizes certain random graph models. We prove almost sure convergence for the weight distribution and show scale-free asymptotic behaviour. Martingale theory and renewal-like equatio...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2014-01, Vol.162, p.78-89 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 89 |
---|---|
container_issue | |
container_start_page | 78 |
container_title | Discrete Applied Mathematics |
container_volume | 162 |
creator | Backhausz, Agnes Mori, Tamas |
description | We examine a random structure consisting of objects with positive weights and evolving in discrete time steps. It generalizes certain random graph models. We prove almost sure convergence for the weight distribution and show scale-free asymptotic behaviour. Martingale theory and renewal-like equations are used in the proofs. |
doi_str_mv | 10.1016/j.dam.2013.08.034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671552780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X13003752</els_id><sourcerecordid>1671552780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-c998fa157ba49b3504dc37de2975eb4980fc3fb5d74b96530508e231a94e30073</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG89iZfWSdM0CZ4W8QsWvCh4C2kyhSxtsybdhf33ZlnPnoaXed6BeQi5pVBRoO3DpnJmrGqgrAJZAWvOyIJKUZetEPScLDLTljWV35fkKqUNANCcFuRuVUQzuTAWY3A4FKEvtrtu8NbMPkyFsbPf-_lwTS56MyS8-ZtL8vXy_Pn0Vq4_Xt-fVuvSMsHm0iole0O56EyjOsahcXnhsFaCY9coCb1lfcedaDrVcgYcJNaMGtUgAxBsSe5Pd7cx_OwwzXr0yeIwmAnDLmnaCsp5LSRklJ5QG0NKEXu9jX408aAp6KMTvdHZiT460SB1dpI7j6cO5h_2HqNO1uNk0fmIdtYu-H_av5V1Z4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671552780</pqid></control><display><type>article</type><title>A random model of publication activity</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Backhausz, Agnes ; Mori, Tamas</creator><creatorcontrib>Backhausz, Agnes ; Mori, Tamas</creatorcontrib><description>We examine a random structure consisting of objects with positive weights and evolving in discrete time steps. It generalizes certain random graph models. We prove almost sure convergence for the weight distribution and show scale-free asymptotic behaviour. Martingale theory and renewal-like equations are used in the proofs.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2013.08.034</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Asymptotic properties ; Convergence ; Documents ; Graphs ; Martingales ; Mathematical analysis ; Mathematical models ; Proving ; Random graphs ; Renewal equation ; Scale free</subject><ispartof>Discrete Applied Mathematics, 2014-01, Vol.162, p.78-89</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-c998fa157ba49b3504dc37de2975eb4980fc3fb5d74b96530508e231a94e30073</citedby><cites>FETCH-LOGICAL-c373t-c998fa157ba49b3504dc37de2975eb4980fc3fb5d74b96530508e231a94e30073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0166218X13003752$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Backhausz, Agnes</creatorcontrib><creatorcontrib>Mori, Tamas</creatorcontrib><title>A random model of publication activity</title><title>Discrete Applied Mathematics</title><description>We examine a random structure consisting of objects with positive weights and evolving in discrete time steps. It generalizes certain random graph models. We prove almost sure convergence for the weight distribution and show scale-free asymptotic behaviour. Martingale theory and renewal-like equations are used in the proofs.</description><subject>Asymptotic properties</subject><subject>Convergence</subject><subject>Documents</subject><subject>Graphs</subject><subject>Martingales</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Proving</subject><subject>Random graphs</subject><subject>Renewal equation</subject><subject>Scale free</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG89iZfWSdM0CZ4W8QsWvCh4C2kyhSxtsybdhf33ZlnPnoaXed6BeQi5pVBRoO3DpnJmrGqgrAJZAWvOyIJKUZetEPScLDLTljWV35fkKqUNANCcFuRuVUQzuTAWY3A4FKEvtrtu8NbMPkyFsbPf-_lwTS56MyS8-ZtL8vXy_Pn0Vq4_Xt-fVuvSMsHm0iole0O56EyjOsahcXnhsFaCY9coCb1lfcedaDrVcgYcJNaMGtUgAxBsSe5Pd7cx_OwwzXr0yeIwmAnDLmnaCsp5LSRklJ5QG0NKEXu9jX408aAp6KMTvdHZiT460SB1dpI7j6cO5h_2HqNO1uNk0fmIdtYu-H_av5V1Z4w</recordid><startdate>20140110</startdate><enddate>20140110</enddate><creator>Backhausz, Agnes</creator><creator>Mori, Tamas</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140110</creationdate><title>A random model of publication activity</title><author>Backhausz, Agnes ; Mori, Tamas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-c998fa157ba49b3504dc37de2975eb4980fc3fb5d74b96530508e231a94e30073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Asymptotic properties</topic><topic>Convergence</topic><topic>Documents</topic><topic>Graphs</topic><topic>Martingales</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Proving</topic><topic>Random graphs</topic><topic>Renewal equation</topic><topic>Scale free</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Backhausz, Agnes</creatorcontrib><creatorcontrib>Mori, Tamas</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Backhausz, Agnes</au><au>Mori, Tamas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A random model of publication activity</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2014-01-10</date><risdate>2014</risdate><volume>162</volume><spage>78</spage><epage>89</epage><pages>78-89</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>We examine a random structure consisting of objects with positive weights and evolving in discrete time steps. It generalizes certain random graph models. We prove almost sure convergence for the weight distribution and show scale-free asymptotic behaviour. Martingale theory and renewal-like equations are used in the proofs.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2013.08.034</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2014-01, Vol.162, p.78-89 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671552780 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Asymptotic properties Convergence Documents Graphs Martingales Mathematical analysis Mathematical models Proving Random graphs Renewal equation Scale free |
title | A random model of publication activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A05%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20random%20model%20of%20publication%20activity&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Backhausz,%20Agnes&rft.date=2014-01-10&rft.volume=162&rft.spage=78&rft.epage=89&rft.pages=78-89&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2013.08.034&rft_dat=%3Cproquest_cross%3E1671552780%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671552780&rft_id=info:pmid/&rft_els_id=S0166218X13003752&rfr_iscdi=true |