Forecasting nonstationary time series based on Hilbert-Huang transform and machine learning

We propose a modification of the adaptive approach to time series forecasting. On the first stage, the original signal is decomposed with respect to a special empirical adaptive orthogonal basis, and the Hilbert’s integral transform is applied. On the second stage, the resulting orthogonal functions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automation and remote control 2014-05, Vol.75 (5), p.922-934
Hauptverfasser: Kurbatsky, V. G., Sidorov, D. N., Spiryaev, V. A., Tomin, N. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a modification of the adaptive approach to time series forecasting. On the first stage, the original signal is decomposed with respect to a special empirical adaptive orthogonal basis, and the Hilbert’s integral transform is applied. On the second stage, the resulting orthogonal functions and their instantaneous amplitudes are used as input variables for the machine learning unit that employs a hybrid genetic algorithm to train an artificial neural network and a regressive model based on support vector machines. The efficiency of the proposed approach is demonstrated on real data coming from Nord Pool Spot and Australian National Energy Market.
ISSN:0005-1179
1608-3032
DOI:10.1134/S0005117914050105