Variation in proanthocyanidin content and composition among commonly grown North American cranberry cultivars (Vaccinium macrocarpon)

BACKGROUND: Cranberry fruit (Vaccinium macrocarpon) is rich in polyphenols, particularly oligomeric proanthocyanidins (PACs) possessing antimicrobial and antioxidant properties. PACs may play a role in resistance to fruit rot. Although many cranberry cultivars are grown for use in foods, beverages a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the science of food and agriculture 2014-10, Vol.94 (13), p.2738-2745
Hauptverfasser: Carpenter, Jessica L, Caruso, Frank L, Tata, Anuradha, Vorsa, Nicholi, Neto, Catherine C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2745
container_issue 13
container_start_page 2738
container_title Journal of the science of food and agriculture
container_volume 94
creator Carpenter, Jessica L
Caruso, Frank L
Tata, Anuradha
Vorsa, Nicholi
Neto, Catherine C
description BACKGROUND: Cranberry fruit (Vaccinium macrocarpon) is rich in polyphenols, particularly oligomeric proanthocyanidins (PACs) possessing antimicrobial and antioxidant properties. PACs may play a role in resistance to fruit rot. Although many cranberry cultivars are grown for use in foods, beverages and nutraceuticals, data on PAC content among cultivars is limited. Eight cultivars were sampled from four growing regions during the 2010 season and analyzed for PAC content and composition. RESULTS: MALDI‐TOF MS showed that isolated PACs had similar oligomer profiles among cultivars. The major constituents were A‐type (epi)catechin oligomers of two to eight degrees of polymerization. Total PAC content ranged between 18 and 92 g PAC kg⁻¹ dried fruit, quantified as procyanidin A2 by the dimethylaminocinnamaldehyde method. Among the cultivars sampled, Howes had the highest total PACs (76–92 g kg⁻¹), followed by Mullica Queen and Early Black (48–82 g kg⁻¹). Ben Lear, a disease‐susceptible variety, was significantly lower in PACs than the other cultivars (P < 0.001). CONCLUSIONS: Several traditional and newer cultivars of cranberry from various growing regions in North America are excellent sources of PACs, particularly the Howes, Mullica Queen and Early Black cultivars. PAC content may play a role in keeping quality. © 2014 Society of Chemical Industry
doi_str_mv 10.1002/jsfa.6618
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671547193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671547193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4848-da9c504128d6cac0aa3f79f3500d41efa8929ba5b96d4c1d1a416ec8a3ea2cd73</originalsourceid><addsrcrecordid>eNqFksFu1DAQhi0EokvhwAtAJC7lkNZ2bMc-LhUtraoiVLogLtas42y9JPZiJ5R9AN67Dlt64MJpRjPfP9KvfxB6SfAhwZgerVMLh0IQ-QjNCFZ1iTHBj9Es72jJCaN76FlKa4yxUkI8RXuU8YpWTM7Q7wVEB4MLvnC-2MQAfrgJZgveNXlggh-sHwrwTe77TUjuDwt98Ktpkmu3LVYx3PriMsThppj3NjoDWRvBL22M28KM3eB-QkzFwQKMcd6NfdGDicFA3AT_9jl60kKX7Iv7uo-uT95_Pv5QXnw8PTueX5SGSSbLBpThmBEqG2HAYICqrVVbcYwbRmwLUlG1BL5UomGGNAQYEdZIqCxQ09TVPjrY3c1Gf4w2Dbp3ydiuA2_DmDQRNeGsJqr6P8oF5pJKyTP65h90Hcbos5GJIoIJwqaDr-6pcdnbRm-i6yFu9d8sMnC0A25dZ7cPe4L1FLKeQtZTyPr86mQ-NVlR7hQuDfbXgwLidy3qqub6y-Wprr--U9_4-Se9yPzrHd9C0LCKLunrK4oJy_9S1ZSy6g5jaLQ7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1561646143</pqid></control><display><type>article</type><title>Variation in proanthocyanidin content and composition among commonly grown North American cranberry cultivars (Vaccinium macrocarpon)</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Carpenter, Jessica L ; Caruso, Frank L ; Tata, Anuradha ; Vorsa, Nicholi ; Neto, Catherine C</creator><creatorcontrib>Carpenter, Jessica L ; Caruso, Frank L ; Tata, Anuradha ; Vorsa, Nicholi ; Neto, Catherine C</creatorcontrib><description>BACKGROUND: Cranberry fruit (Vaccinium macrocarpon) is rich in polyphenols, particularly oligomeric proanthocyanidins (PACs) possessing antimicrobial and antioxidant properties. PACs may play a role in resistance to fruit rot. Although many cranberry cultivars are grown for use in foods, beverages and nutraceuticals, data on PAC content among cultivars is limited. Eight cultivars were sampled from four growing regions during the 2010 season and analyzed for PAC content and composition. RESULTS: MALDI‐TOF MS showed that isolated PACs had similar oligomer profiles among cultivars. The major constituents were A‐type (epi)catechin oligomers of two to eight degrees of polymerization. Total PAC content ranged between 18 and 92 g PAC kg⁻¹ dried fruit, quantified as procyanidin A2 by the dimethylaminocinnamaldehyde method. Among the cultivars sampled, Howes had the highest total PACs (76–92 g kg⁻¹), followed by Mullica Queen and Early Black (48–82 g kg⁻¹). Ben Lear, a disease‐susceptible variety, was significantly lower in PACs than the other cultivars (P &lt; 0.001). CONCLUSIONS: Several traditional and newer cultivars of cranberry from various growing regions in North America are excellent sources of PACs, particularly the Howes, Mullica Queen and Early Black cultivars. PAC content may play a role in keeping quality. © 2014 Society of Chemical Industry</description><identifier>ISSN: 0022-5142</identifier><identifier>EISSN: 1097-0010</identifier><identifier>DOI: 10.1002/jsfa.6618</identifier><identifier>PMID: 24532348</identifier><identifier>CODEN: JSFAAE</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Anti-Infective Agents - analysis ; Anti-Infective Agents - chemistry ; Anti-Infective Agents - metabolism ; antioxidant activity ; Antioxidants ; Antioxidants - analysis ; Antioxidants - chemistry ; Antioxidants - metabolism ; Beneficiation ; beverages ; British Columbia ; catechin ; Chromatography, High Pressure Liquid ; Cranberries ; cranberry ; Crops, Agricultural - chemistry ; Crops, Agricultural - growth &amp; development ; Crops, Agricultural - metabolism ; Cultivars ; Disease Resistance ; dried fruit ; Foods ; Freeze Drying ; Fruit - chemistry ; Fruit - growth &amp; development ; Fruit - metabolism ; Fruits ; functional foods ; MALDI-TOF MS ; Mass spectrometry ; Massachusetts ; Molecular Weight ; New Jersey ; Oligomers ; phenolics ; Phenols - analysis ; Phenols - metabolism ; Plant Extracts - chemistry ; plant rots ; Polymerization ; Polyphenols ; Proanthocyanidins ; Proanthocyanidins - analysis ; Proanthocyanidins - biosynthesis ; Proanthocyanidins - chemistry ; Species Specificity ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Spectrophotometry, Ultraviolet ; storage quality ; Symbols ; Vaccinium macrocarpon ; Vaccinium macrocarpon - chemistry ; Vaccinium macrocarpon - growth &amp; development ; Vaccinium macrocarpon - metabolism ; Wisconsin</subject><ispartof>Journal of the science of food and agriculture, 2014-10, Vol.94 (13), p.2738-2745</ispartof><rights>2014 Society of Chemical Industry</rights><rights>2014 Society of Chemical Industry.</rights><rights>Copyright John Wiley and Sons, Limited Oct 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4848-da9c504128d6cac0aa3f79f3500d41efa8929ba5b96d4c1d1a416ec8a3ea2cd73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjsfa.6618$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjsfa.6618$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24532348$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carpenter, Jessica L</creatorcontrib><creatorcontrib>Caruso, Frank L</creatorcontrib><creatorcontrib>Tata, Anuradha</creatorcontrib><creatorcontrib>Vorsa, Nicholi</creatorcontrib><creatorcontrib>Neto, Catherine C</creatorcontrib><title>Variation in proanthocyanidin content and composition among commonly grown North American cranberry cultivars (Vaccinium macrocarpon)</title><title>Journal of the science of food and agriculture</title><addtitle>J. Sci. Food Agric</addtitle><description>BACKGROUND: Cranberry fruit (Vaccinium macrocarpon) is rich in polyphenols, particularly oligomeric proanthocyanidins (PACs) possessing antimicrobial and antioxidant properties. PACs may play a role in resistance to fruit rot. Although many cranberry cultivars are grown for use in foods, beverages and nutraceuticals, data on PAC content among cultivars is limited. Eight cultivars were sampled from four growing regions during the 2010 season and analyzed for PAC content and composition. RESULTS: MALDI‐TOF MS showed that isolated PACs had similar oligomer profiles among cultivars. The major constituents were A‐type (epi)catechin oligomers of two to eight degrees of polymerization. Total PAC content ranged between 18 and 92 g PAC kg⁻¹ dried fruit, quantified as procyanidin A2 by the dimethylaminocinnamaldehyde method. Among the cultivars sampled, Howes had the highest total PACs (76–92 g kg⁻¹), followed by Mullica Queen and Early Black (48–82 g kg⁻¹). Ben Lear, a disease‐susceptible variety, was significantly lower in PACs than the other cultivars (P &lt; 0.001). CONCLUSIONS: Several traditional and newer cultivars of cranberry from various growing regions in North America are excellent sources of PACs, particularly the Howes, Mullica Queen and Early Black cultivars. PAC content may play a role in keeping quality. © 2014 Society of Chemical Industry</description><subject>Anti-Infective Agents - analysis</subject><subject>Anti-Infective Agents - chemistry</subject><subject>Anti-Infective Agents - metabolism</subject><subject>antioxidant activity</subject><subject>Antioxidants</subject><subject>Antioxidants - analysis</subject><subject>Antioxidants - chemistry</subject><subject>Antioxidants - metabolism</subject><subject>Beneficiation</subject><subject>beverages</subject><subject>British Columbia</subject><subject>catechin</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Cranberries</subject><subject>cranberry</subject><subject>Crops, Agricultural - chemistry</subject><subject>Crops, Agricultural - growth &amp; development</subject><subject>Crops, Agricultural - metabolism</subject><subject>Cultivars</subject><subject>Disease Resistance</subject><subject>dried fruit</subject><subject>Foods</subject><subject>Freeze Drying</subject><subject>Fruit - chemistry</subject><subject>Fruit - growth &amp; development</subject><subject>Fruit - metabolism</subject><subject>Fruits</subject><subject>functional foods</subject><subject>MALDI-TOF MS</subject><subject>Mass spectrometry</subject><subject>Massachusetts</subject><subject>Molecular Weight</subject><subject>New Jersey</subject><subject>Oligomers</subject><subject>phenolics</subject><subject>Phenols - analysis</subject><subject>Phenols - metabolism</subject><subject>Plant Extracts - chemistry</subject><subject>plant rots</subject><subject>Polymerization</subject><subject>Polyphenols</subject><subject>Proanthocyanidins</subject><subject>Proanthocyanidins - analysis</subject><subject>Proanthocyanidins - biosynthesis</subject><subject>Proanthocyanidins - chemistry</subject><subject>Species Specificity</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><subject>Spectrophotometry, Ultraviolet</subject><subject>storage quality</subject><subject>Symbols</subject><subject>Vaccinium macrocarpon</subject><subject>Vaccinium macrocarpon - chemistry</subject><subject>Vaccinium macrocarpon - growth &amp; development</subject><subject>Vaccinium macrocarpon - metabolism</subject><subject>Wisconsin</subject><issn>0022-5142</issn><issn>1097-0010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFksFu1DAQhi0EokvhwAtAJC7lkNZ2bMc-LhUtraoiVLogLtas42y9JPZiJ5R9AN67Dlt64MJpRjPfP9KvfxB6SfAhwZgerVMLh0IQ-QjNCFZ1iTHBj9Es72jJCaN76FlKa4yxUkI8RXuU8YpWTM7Q7wVEB4MLvnC-2MQAfrgJZgveNXlggh-sHwrwTe77TUjuDwt98Ktpkmu3LVYx3PriMsThppj3NjoDWRvBL22M28KM3eB-QkzFwQKMcd6NfdGDicFA3AT_9jl60kKX7Iv7uo-uT95_Pv5QXnw8PTueX5SGSSbLBpThmBEqG2HAYICqrVVbcYwbRmwLUlG1BL5UomGGNAQYEdZIqCxQ09TVPjrY3c1Gf4w2Dbp3ydiuA2_DmDQRNeGsJqr6P8oF5pJKyTP65h90Hcbos5GJIoIJwqaDr-6pcdnbRm-i6yFu9d8sMnC0A25dZ7cPe4L1FLKeQtZTyPr86mQ-NVlR7hQuDfbXgwLidy3qqub6y-Wprr--U9_4-Se9yPzrHd9C0LCKLunrK4oJy_9S1ZSy6g5jaLQ7</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Carpenter, Jessica L</creator><creator>Caruso, Frank L</creator><creator>Tata, Anuradha</creator><creator>Vorsa, Nicholi</creator><creator>Neto, Catherine C</creator><general>John Wiley &amp; Sons, Ltd</general><general>John Wiley and Sons, Limited</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201410</creationdate><title>Variation in proanthocyanidin content and composition among commonly grown North American cranberry cultivars (Vaccinium macrocarpon)</title><author>Carpenter, Jessica L ; Caruso, Frank L ; Tata, Anuradha ; Vorsa, Nicholi ; Neto, Catherine C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4848-da9c504128d6cac0aa3f79f3500d41efa8929ba5b96d4c1d1a416ec8a3ea2cd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anti-Infective Agents - analysis</topic><topic>Anti-Infective Agents - chemistry</topic><topic>Anti-Infective Agents - metabolism</topic><topic>antioxidant activity</topic><topic>Antioxidants</topic><topic>Antioxidants - analysis</topic><topic>Antioxidants - chemistry</topic><topic>Antioxidants - metabolism</topic><topic>Beneficiation</topic><topic>beverages</topic><topic>British Columbia</topic><topic>catechin</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Cranberries</topic><topic>cranberry</topic><topic>Crops, Agricultural - chemistry</topic><topic>Crops, Agricultural - growth &amp; development</topic><topic>Crops, Agricultural - metabolism</topic><topic>Cultivars</topic><topic>Disease Resistance</topic><topic>dried fruit</topic><topic>Foods</topic><topic>Freeze Drying</topic><topic>Fruit - chemistry</topic><topic>Fruit - growth &amp; development</topic><topic>Fruit - metabolism</topic><topic>Fruits</topic><topic>functional foods</topic><topic>MALDI-TOF MS</topic><topic>Mass spectrometry</topic><topic>Massachusetts</topic><topic>Molecular Weight</topic><topic>New Jersey</topic><topic>Oligomers</topic><topic>phenolics</topic><topic>Phenols - analysis</topic><topic>Phenols - metabolism</topic><topic>Plant Extracts - chemistry</topic><topic>plant rots</topic><topic>Polymerization</topic><topic>Polyphenols</topic><topic>Proanthocyanidins</topic><topic>Proanthocyanidins - analysis</topic><topic>Proanthocyanidins - biosynthesis</topic><topic>Proanthocyanidins - chemistry</topic><topic>Species Specificity</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><topic>Spectrophotometry, Ultraviolet</topic><topic>storage quality</topic><topic>Symbols</topic><topic>Vaccinium macrocarpon</topic><topic>Vaccinium macrocarpon - chemistry</topic><topic>Vaccinium macrocarpon - growth &amp; development</topic><topic>Vaccinium macrocarpon - metabolism</topic><topic>Wisconsin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carpenter, Jessica L</creatorcontrib><creatorcontrib>Caruso, Frank L</creatorcontrib><creatorcontrib>Tata, Anuradha</creatorcontrib><creatorcontrib>Vorsa, Nicholi</creatorcontrib><creatorcontrib>Neto, Catherine C</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the science of food and agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carpenter, Jessica L</au><au>Caruso, Frank L</au><au>Tata, Anuradha</au><au>Vorsa, Nicholi</au><au>Neto, Catherine C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variation in proanthocyanidin content and composition among commonly grown North American cranberry cultivars (Vaccinium macrocarpon)</atitle><jtitle>Journal of the science of food and agriculture</jtitle><addtitle>J. Sci. Food Agric</addtitle><date>2014-10</date><risdate>2014</risdate><volume>94</volume><issue>13</issue><spage>2738</spage><epage>2745</epage><pages>2738-2745</pages><issn>0022-5142</issn><eissn>1097-0010</eissn><coden>JSFAAE</coden><abstract>BACKGROUND: Cranberry fruit (Vaccinium macrocarpon) is rich in polyphenols, particularly oligomeric proanthocyanidins (PACs) possessing antimicrobial and antioxidant properties. PACs may play a role in resistance to fruit rot. Although many cranberry cultivars are grown for use in foods, beverages and nutraceuticals, data on PAC content among cultivars is limited. Eight cultivars were sampled from four growing regions during the 2010 season and analyzed for PAC content and composition. RESULTS: MALDI‐TOF MS showed that isolated PACs had similar oligomer profiles among cultivars. The major constituents were A‐type (epi)catechin oligomers of two to eight degrees of polymerization. Total PAC content ranged between 18 and 92 g PAC kg⁻¹ dried fruit, quantified as procyanidin A2 by the dimethylaminocinnamaldehyde method. Among the cultivars sampled, Howes had the highest total PACs (76–92 g kg⁻¹), followed by Mullica Queen and Early Black (48–82 g kg⁻¹). Ben Lear, a disease‐susceptible variety, was significantly lower in PACs than the other cultivars (P &lt; 0.001). CONCLUSIONS: Several traditional and newer cultivars of cranberry from various growing regions in North America are excellent sources of PACs, particularly the Howes, Mullica Queen and Early Black cultivars. PAC content may play a role in keeping quality. © 2014 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>24532348</pmid><doi>10.1002/jsfa.6618</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-5142
ispartof Journal of the science of food and agriculture, 2014-10, Vol.94 (13), p.2738-2745
issn 0022-5142
1097-0010
language eng
recordid cdi_proquest_miscellaneous_1671547193
source MEDLINE; Access via Wiley Online Library
subjects Anti-Infective Agents - analysis
Anti-Infective Agents - chemistry
Anti-Infective Agents - metabolism
antioxidant activity
Antioxidants
Antioxidants - analysis
Antioxidants - chemistry
Antioxidants - metabolism
Beneficiation
beverages
British Columbia
catechin
Chromatography, High Pressure Liquid
Cranberries
cranberry
Crops, Agricultural - chemistry
Crops, Agricultural - growth & development
Crops, Agricultural - metabolism
Cultivars
Disease Resistance
dried fruit
Foods
Freeze Drying
Fruit - chemistry
Fruit - growth & development
Fruit - metabolism
Fruits
functional foods
MALDI-TOF MS
Mass spectrometry
Massachusetts
Molecular Weight
New Jersey
Oligomers
phenolics
Phenols - analysis
Phenols - metabolism
Plant Extracts - chemistry
plant rots
Polymerization
Polyphenols
Proanthocyanidins
Proanthocyanidins - analysis
Proanthocyanidins - biosynthesis
Proanthocyanidins - chemistry
Species Specificity
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Spectrophotometry, Ultraviolet
storage quality
Symbols
Vaccinium macrocarpon
Vaccinium macrocarpon - chemistry
Vaccinium macrocarpon - growth & development
Vaccinium macrocarpon - metabolism
Wisconsin
title Variation in proanthocyanidin content and composition among commonly grown North American cranberry cultivars (Vaccinium macrocarpon)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variation%20in%20proanthocyanidin%20content%20and%20composition%20among%20commonly%20grown%20North%20American%20cranberry%20cultivars%20(Vaccinium%20macrocarpon)&rft.jtitle=Journal%20of%20the%20science%20of%20food%20and%20agriculture&rft.au=Carpenter,%20Jessica%20L&rft.date=2014-10&rft.volume=94&rft.issue=13&rft.spage=2738&rft.epage=2745&rft.pages=2738-2745&rft.issn=0022-5142&rft.eissn=1097-0010&rft.coden=JSFAAE&rft_id=info:doi/10.1002/jsfa.6618&rft_dat=%3Cproquest_pubme%3E1671547193%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1561646143&rft_id=info:pmid/24532348&rfr_iscdi=true