Variation in proanthocyanidin content and composition among commonly grown North American cranberry cultivars (Vaccinium macrocarpon)
BACKGROUND: Cranberry fruit (Vaccinium macrocarpon) is rich in polyphenols, particularly oligomeric proanthocyanidins (PACs) possessing antimicrobial and antioxidant properties. PACs may play a role in resistance to fruit rot. Although many cranberry cultivars are grown for use in foods, beverages a...
Gespeichert in:
Veröffentlicht in: | Journal of the science of food and agriculture 2014-10, Vol.94 (13), p.2738-2745 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2745 |
---|---|
container_issue | 13 |
container_start_page | 2738 |
container_title | Journal of the science of food and agriculture |
container_volume | 94 |
creator | Carpenter, Jessica L Caruso, Frank L Tata, Anuradha Vorsa, Nicholi Neto, Catherine C |
description | BACKGROUND: Cranberry fruit (Vaccinium macrocarpon) is rich in polyphenols, particularly oligomeric proanthocyanidins (PACs) possessing antimicrobial and antioxidant properties. PACs may play a role in resistance to fruit rot. Although many cranberry cultivars are grown for use in foods, beverages and nutraceuticals, data on PAC content among cultivars is limited. Eight cultivars were sampled from four growing regions during the 2010 season and analyzed for PAC content and composition. RESULTS: MALDI‐TOF MS showed that isolated PACs had similar oligomer profiles among cultivars. The major constituents were A‐type (epi)catechin oligomers of two to eight degrees of polymerization. Total PAC content ranged between 18 and 92 g PAC kg⁻¹ dried fruit, quantified as procyanidin A2 by the dimethylaminocinnamaldehyde method. Among the cultivars sampled, Howes had the highest total PACs (76–92 g kg⁻¹), followed by Mullica Queen and Early Black (48–82 g kg⁻¹). Ben Lear, a disease‐susceptible variety, was significantly lower in PACs than the other cultivars (P < 0.001). CONCLUSIONS: Several traditional and newer cultivars of cranberry from various growing regions in North America are excellent sources of PACs, particularly the Howes, Mullica Queen and Early Black cultivars. PAC content may play a role in keeping quality. © 2014 Society of Chemical Industry |
doi_str_mv | 10.1002/jsfa.6618 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671547193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671547193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4848-da9c504128d6cac0aa3f79f3500d41efa8929ba5b96d4c1d1a416ec8a3ea2cd73</originalsourceid><addsrcrecordid>eNqFksFu1DAQhi0EokvhwAtAJC7lkNZ2bMc-LhUtraoiVLogLtas42y9JPZiJ5R9AN67Dlt64MJpRjPfP9KvfxB6SfAhwZgerVMLh0IQ-QjNCFZ1iTHBj9Es72jJCaN76FlKa4yxUkI8RXuU8YpWTM7Q7wVEB4MLvnC-2MQAfrgJZgveNXlggh-sHwrwTe77TUjuDwt98Ktpkmu3LVYx3PriMsThppj3NjoDWRvBL22M28KM3eB-QkzFwQKMcd6NfdGDicFA3AT_9jl60kKX7Iv7uo-uT95_Pv5QXnw8PTueX5SGSSbLBpThmBEqG2HAYICqrVVbcYwbRmwLUlG1BL5UomGGNAQYEdZIqCxQ09TVPjrY3c1Gf4w2Dbp3ydiuA2_DmDQRNeGsJqr6P8oF5pJKyTP65h90Hcbos5GJIoIJwqaDr-6pcdnbRm-i6yFu9d8sMnC0A25dZ7cPe4L1FLKeQtZTyPr86mQ-NVlR7hQuDfbXgwLidy3qqub6y-Wprr--U9_4-Se9yPzrHd9C0LCKLunrK4oJy_9S1ZSy6g5jaLQ7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1561646143</pqid></control><display><type>article</type><title>Variation in proanthocyanidin content and composition among commonly grown North American cranberry cultivars (Vaccinium macrocarpon)</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Carpenter, Jessica L ; Caruso, Frank L ; Tata, Anuradha ; Vorsa, Nicholi ; Neto, Catherine C</creator><creatorcontrib>Carpenter, Jessica L ; Caruso, Frank L ; Tata, Anuradha ; Vorsa, Nicholi ; Neto, Catherine C</creatorcontrib><description>BACKGROUND: Cranberry fruit (Vaccinium macrocarpon) is rich in polyphenols, particularly oligomeric proanthocyanidins (PACs) possessing antimicrobial and antioxidant properties. PACs may play a role in resistance to fruit rot. Although many cranberry cultivars are grown for use in foods, beverages and nutraceuticals, data on PAC content among cultivars is limited. Eight cultivars were sampled from four growing regions during the 2010 season and analyzed for PAC content and composition. RESULTS: MALDI‐TOF MS showed that isolated PACs had similar oligomer profiles among cultivars. The major constituents were A‐type (epi)catechin oligomers of two to eight degrees of polymerization. Total PAC content ranged between 18 and 92 g PAC kg⁻¹ dried fruit, quantified as procyanidin A2 by the dimethylaminocinnamaldehyde method. Among the cultivars sampled, Howes had the highest total PACs (76–92 g kg⁻¹), followed by Mullica Queen and Early Black (48–82 g kg⁻¹). Ben Lear, a disease‐susceptible variety, was significantly lower in PACs than the other cultivars (P < 0.001). CONCLUSIONS: Several traditional and newer cultivars of cranberry from various growing regions in North America are excellent sources of PACs, particularly the Howes, Mullica Queen and Early Black cultivars. PAC content may play a role in keeping quality. © 2014 Society of Chemical Industry</description><identifier>ISSN: 0022-5142</identifier><identifier>EISSN: 1097-0010</identifier><identifier>DOI: 10.1002/jsfa.6618</identifier><identifier>PMID: 24532348</identifier><identifier>CODEN: JSFAAE</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Anti-Infective Agents - analysis ; Anti-Infective Agents - chemistry ; Anti-Infective Agents - metabolism ; antioxidant activity ; Antioxidants ; Antioxidants - analysis ; Antioxidants - chemistry ; Antioxidants - metabolism ; Beneficiation ; beverages ; British Columbia ; catechin ; Chromatography, High Pressure Liquid ; Cranberries ; cranberry ; Crops, Agricultural - chemistry ; Crops, Agricultural - growth & development ; Crops, Agricultural - metabolism ; Cultivars ; Disease Resistance ; dried fruit ; Foods ; Freeze Drying ; Fruit - chemistry ; Fruit - growth & development ; Fruit - metabolism ; Fruits ; functional foods ; MALDI-TOF MS ; Mass spectrometry ; Massachusetts ; Molecular Weight ; New Jersey ; Oligomers ; phenolics ; Phenols - analysis ; Phenols - metabolism ; Plant Extracts - chemistry ; plant rots ; Polymerization ; Polyphenols ; Proanthocyanidins ; Proanthocyanidins - analysis ; Proanthocyanidins - biosynthesis ; Proanthocyanidins - chemistry ; Species Specificity ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Spectrophotometry, Ultraviolet ; storage quality ; Symbols ; Vaccinium macrocarpon ; Vaccinium macrocarpon - chemistry ; Vaccinium macrocarpon - growth & development ; Vaccinium macrocarpon - metabolism ; Wisconsin</subject><ispartof>Journal of the science of food and agriculture, 2014-10, Vol.94 (13), p.2738-2745</ispartof><rights>2014 Society of Chemical Industry</rights><rights>2014 Society of Chemical Industry.</rights><rights>Copyright John Wiley and Sons, Limited Oct 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4848-da9c504128d6cac0aa3f79f3500d41efa8929ba5b96d4c1d1a416ec8a3ea2cd73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjsfa.6618$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjsfa.6618$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24532348$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carpenter, Jessica L</creatorcontrib><creatorcontrib>Caruso, Frank L</creatorcontrib><creatorcontrib>Tata, Anuradha</creatorcontrib><creatorcontrib>Vorsa, Nicholi</creatorcontrib><creatorcontrib>Neto, Catherine C</creatorcontrib><title>Variation in proanthocyanidin content and composition among commonly grown North American cranberry cultivars (Vaccinium macrocarpon)</title><title>Journal of the science of food and agriculture</title><addtitle>J. Sci. Food Agric</addtitle><description>BACKGROUND: Cranberry fruit (Vaccinium macrocarpon) is rich in polyphenols, particularly oligomeric proanthocyanidins (PACs) possessing antimicrobial and antioxidant properties. PACs may play a role in resistance to fruit rot. Although many cranberry cultivars are grown for use in foods, beverages and nutraceuticals, data on PAC content among cultivars is limited. Eight cultivars were sampled from four growing regions during the 2010 season and analyzed for PAC content and composition. RESULTS: MALDI‐TOF MS showed that isolated PACs had similar oligomer profiles among cultivars. The major constituents were A‐type (epi)catechin oligomers of two to eight degrees of polymerization. Total PAC content ranged between 18 and 92 g PAC kg⁻¹ dried fruit, quantified as procyanidin A2 by the dimethylaminocinnamaldehyde method. Among the cultivars sampled, Howes had the highest total PACs (76–92 g kg⁻¹), followed by Mullica Queen and Early Black (48–82 g kg⁻¹). Ben Lear, a disease‐susceptible variety, was significantly lower in PACs than the other cultivars (P < 0.001). CONCLUSIONS: Several traditional and newer cultivars of cranberry from various growing regions in North America are excellent sources of PACs, particularly the Howes, Mullica Queen and Early Black cultivars. PAC content may play a role in keeping quality. © 2014 Society of Chemical Industry</description><subject>Anti-Infective Agents - analysis</subject><subject>Anti-Infective Agents - chemistry</subject><subject>Anti-Infective Agents - metabolism</subject><subject>antioxidant activity</subject><subject>Antioxidants</subject><subject>Antioxidants - analysis</subject><subject>Antioxidants - chemistry</subject><subject>Antioxidants - metabolism</subject><subject>Beneficiation</subject><subject>beverages</subject><subject>British Columbia</subject><subject>catechin</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Cranberries</subject><subject>cranberry</subject><subject>Crops, Agricultural - chemistry</subject><subject>Crops, Agricultural - growth & development</subject><subject>Crops, Agricultural - metabolism</subject><subject>Cultivars</subject><subject>Disease Resistance</subject><subject>dried fruit</subject><subject>Foods</subject><subject>Freeze Drying</subject><subject>Fruit - chemistry</subject><subject>Fruit - growth & development</subject><subject>Fruit - metabolism</subject><subject>Fruits</subject><subject>functional foods</subject><subject>MALDI-TOF MS</subject><subject>Mass spectrometry</subject><subject>Massachusetts</subject><subject>Molecular Weight</subject><subject>New Jersey</subject><subject>Oligomers</subject><subject>phenolics</subject><subject>Phenols - analysis</subject><subject>Phenols - metabolism</subject><subject>Plant Extracts - chemistry</subject><subject>plant rots</subject><subject>Polymerization</subject><subject>Polyphenols</subject><subject>Proanthocyanidins</subject><subject>Proanthocyanidins - analysis</subject><subject>Proanthocyanidins - biosynthesis</subject><subject>Proanthocyanidins - chemistry</subject><subject>Species Specificity</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><subject>Spectrophotometry, Ultraviolet</subject><subject>storage quality</subject><subject>Symbols</subject><subject>Vaccinium macrocarpon</subject><subject>Vaccinium macrocarpon - chemistry</subject><subject>Vaccinium macrocarpon - growth & development</subject><subject>Vaccinium macrocarpon - metabolism</subject><subject>Wisconsin</subject><issn>0022-5142</issn><issn>1097-0010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFksFu1DAQhi0EokvhwAtAJC7lkNZ2bMc-LhUtraoiVLogLtas42y9JPZiJ5R9AN67Dlt64MJpRjPfP9KvfxB6SfAhwZgerVMLh0IQ-QjNCFZ1iTHBj9Es72jJCaN76FlKa4yxUkI8RXuU8YpWTM7Q7wVEB4MLvnC-2MQAfrgJZgveNXlggh-sHwrwTe77TUjuDwt98Ktpkmu3LVYx3PriMsThppj3NjoDWRvBL22M28KM3eB-QkzFwQKMcd6NfdGDicFA3AT_9jl60kKX7Iv7uo-uT95_Pv5QXnw8PTueX5SGSSbLBpThmBEqG2HAYICqrVVbcYwbRmwLUlG1BL5UomGGNAQYEdZIqCxQ09TVPjrY3c1Gf4w2Dbp3ydiuA2_DmDQRNeGsJqr6P8oF5pJKyTP65h90Hcbos5GJIoIJwqaDr-6pcdnbRm-i6yFu9d8sMnC0A25dZ7cPe4L1FLKeQtZTyPr86mQ-NVlR7hQuDfbXgwLidy3qqub6y-Wprr--U9_4-Se9yPzrHd9C0LCKLunrK4oJy_9S1ZSy6g5jaLQ7</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Carpenter, Jessica L</creator><creator>Caruso, Frank L</creator><creator>Tata, Anuradha</creator><creator>Vorsa, Nicholi</creator><creator>Neto, Catherine C</creator><general>John Wiley & Sons, Ltd</general><general>John Wiley and Sons, Limited</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201410</creationdate><title>Variation in proanthocyanidin content and composition among commonly grown North American cranberry cultivars (Vaccinium macrocarpon)</title><author>Carpenter, Jessica L ; Caruso, Frank L ; Tata, Anuradha ; Vorsa, Nicholi ; Neto, Catherine C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4848-da9c504128d6cac0aa3f79f3500d41efa8929ba5b96d4c1d1a416ec8a3ea2cd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anti-Infective Agents - analysis</topic><topic>Anti-Infective Agents - chemistry</topic><topic>Anti-Infective Agents - metabolism</topic><topic>antioxidant activity</topic><topic>Antioxidants</topic><topic>Antioxidants - analysis</topic><topic>Antioxidants - chemistry</topic><topic>Antioxidants - metabolism</topic><topic>Beneficiation</topic><topic>beverages</topic><topic>British Columbia</topic><topic>catechin</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Cranberries</topic><topic>cranberry</topic><topic>Crops, Agricultural - chemistry</topic><topic>Crops, Agricultural - growth & development</topic><topic>Crops, Agricultural - metabolism</topic><topic>Cultivars</topic><topic>Disease Resistance</topic><topic>dried fruit</topic><topic>Foods</topic><topic>Freeze Drying</topic><topic>Fruit - chemistry</topic><topic>Fruit - growth & development</topic><topic>Fruit - metabolism</topic><topic>Fruits</topic><topic>functional foods</topic><topic>MALDI-TOF MS</topic><topic>Mass spectrometry</topic><topic>Massachusetts</topic><topic>Molecular Weight</topic><topic>New Jersey</topic><topic>Oligomers</topic><topic>phenolics</topic><topic>Phenols - analysis</topic><topic>Phenols - metabolism</topic><topic>Plant Extracts - chemistry</topic><topic>plant rots</topic><topic>Polymerization</topic><topic>Polyphenols</topic><topic>Proanthocyanidins</topic><topic>Proanthocyanidins - analysis</topic><topic>Proanthocyanidins - biosynthesis</topic><topic>Proanthocyanidins - chemistry</topic><topic>Species Specificity</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><topic>Spectrophotometry, Ultraviolet</topic><topic>storage quality</topic><topic>Symbols</topic><topic>Vaccinium macrocarpon</topic><topic>Vaccinium macrocarpon - chemistry</topic><topic>Vaccinium macrocarpon - growth & development</topic><topic>Vaccinium macrocarpon - metabolism</topic><topic>Wisconsin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carpenter, Jessica L</creatorcontrib><creatorcontrib>Caruso, Frank L</creatorcontrib><creatorcontrib>Tata, Anuradha</creatorcontrib><creatorcontrib>Vorsa, Nicholi</creatorcontrib><creatorcontrib>Neto, Catherine C</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the science of food and agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carpenter, Jessica L</au><au>Caruso, Frank L</au><au>Tata, Anuradha</au><au>Vorsa, Nicholi</au><au>Neto, Catherine C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variation in proanthocyanidin content and composition among commonly grown North American cranberry cultivars (Vaccinium macrocarpon)</atitle><jtitle>Journal of the science of food and agriculture</jtitle><addtitle>J. Sci. Food Agric</addtitle><date>2014-10</date><risdate>2014</risdate><volume>94</volume><issue>13</issue><spage>2738</spage><epage>2745</epage><pages>2738-2745</pages><issn>0022-5142</issn><eissn>1097-0010</eissn><coden>JSFAAE</coden><abstract>BACKGROUND: Cranberry fruit (Vaccinium macrocarpon) is rich in polyphenols, particularly oligomeric proanthocyanidins (PACs) possessing antimicrobial and antioxidant properties. PACs may play a role in resistance to fruit rot. Although many cranberry cultivars are grown for use in foods, beverages and nutraceuticals, data on PAC content among cultivars is limited. Eight cultivars were sampled from four growing regions during the 2010 season and analyzed for PAC content and composition. RESULTS: MALDI‐TOF MS showed that isolated PACs had similar oligomer profiles among cultivars. The major constituents were A‐type (epi)catechin oligomers of two to eight degrees of polymerization. Total PAC content ranged between 18 and 92 g PAC kg⁻¹ dried fruit, quantified as procyanidin A2 by the dimethylaminocinnamaldehyde method. Among the cultivars sampled, Howes had the highest total PACs (76–92 g kg⁻¹), followed by Mullica Queen and Early Black (48–82 g kg⁻¹). Ben Lear, a disease‐susceptible variety, was significantly lower in PACs than the other cultivars (P < 0.001). CONCLUSIONS: Several traditional and newer cultivars of cranberry from various growing regions in North America are excellent sources of PACs, particularly the Howes, Mullica Queen and Early Black cultivars. PAC content may play a role in keeping quality. © 2014 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>24532348</pmid><doi>10.1002/jsfa.6618</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5142 |
ispartof | Journal of the science of food and agriculture, 2014-10, Vol.94 (13), p.2738-2745 |
issn | 0022-5142 1097-0010 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671547193 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Anti-Infective Agents - analysis Anti-Infective Agents - chemistry Anti-Infective Agents - metabolism antioxidant activity Antioxidants Antioxidants - analysis Antioxidants - chemistry Antioxidants - metabolism Beneficiation beverages British Columbia catechin Chromatography, High Pressure Liquid Cranberries cranberry Crops, Agricultural - chemistry Crops, Agricultural - growth & development Crops, Agricultural - metabolism Cultivars Disease Resistance dried fruit Foods Freeze Drying Fruit - chemistry Fruit - growth & development Fruit - metabolism Fruits functional foods MALDI-TOF MS Mass spectrometry Massachusetts Molecular Weight New Jersey Oligomers phenolics Phenols - analysis Phenols - metabolism Plant Extracts - chemistry plant rots Polymerization Polyphenols Proanthocyanidins Proanthocyanidins - analysis Proanthocyanidins - biosynthesis Proanthocyanidins - chemistry Species Specificity Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization Spectrophotometry, Ultraviolet storage quality Symbols Vaccinium macrocarpon Vaccinium macrocarpon - chemistry Vaccinium macrocarpon - growth & development Vaccinium macrocarpon - metabolism Wisconsin |
title | Variation in proanthocyanidin content and composition among commonly grown North American cranberry cultivars (Vaccinium macrocarpon) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variation%20in%20proanthocyanidin%20content%20and%20composition%20among%20commonly%20grown%20North%20American%20cranberry%20cultivars%20(Vaccinium%20macrocarpon)&rft.jtitle=Journal%20of%20the%20science%20of%20food%20and%20agriculture&rft.au=Carpenter,%20Jessica%20L&rft.date=2014-10&rft.volume=94&rft.issue=13&rft.spage=2738&rft.epage=2745&rft.pages=2738-2745&rft.issn=0022-5142&rft.eissn=1097-0010&rft.coden=JSFAAE&rft_id=info:doi/10.1002/jsfa.6618&rft_dat=%3Cproquest_pubme%3E1671547193%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1561646143&rft_id=info:pmid/24532348&rfr_iscdi=true |