Behavioral dynamics on the web: Learning, modeling, and prediction
The queries people issue to a search engine and the results clicked following a query change over time. For example, after the earthquake in Japan in March 2011, the query japan spiked in popularity and people issuing the query were more likely to click government-related results than they would pri...
Gespeichert in:
Veröffentlicht in: | ACM transactions on information systems 2013-07, Vol.31 (3), p.1-37 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | ACM transactions on information systems |
container_volume | 31 |
creator | Radinsky, Kira Svore, Krysta M. Dumais, Susan T. Shokouhi, Milad Teevan, Jaime Bocharov, Alex Horvitz, Eric |
description | The queries people issue to a search engine and the results clicked following a query change over time. For example, after the earthquake in Japan in March 2011, the query
japan
spiked in popularity and people issuing the query were more likely to click government-related results than they would prior to the earthquake. We explore the modeling and prediction of such temporal patterns in Web search behavior. We develop a temporal modeling framework adapted from physics and signal processing and harness it to predict temporal patterns in search behavior using smoothing, trends, periodicities, and surprises. Using current and past behavioral data, we develop a learning procedure that can be used to construct models of users' Web search activities. We also develop a novel methodology that learns to select the best prediction model from a family of predictive models for a given query or a class of queries. Experimental results indicate that the predictive models significantly outperform baseline models that weight historical evidence the same for all queries. We present two applications where new methods introduced for the temporal modeling of user behavior significantly improve upon the state of the art. Finally, we discuss opportunities for using models of temporal dynamics to enhance other areas of Web search and information retrieval. |
doi_str_mv | 10.1145/2493175.2493181 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671546531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671546531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-76e7e052acdb2da5dc61de66243767749fa7fed09a956e9899d67af33bdf9f0a3</originalsourceid><addsrcrecordid>eNotkD1PwzAURS0EEqUws6GMLGn9ET_bI1QUkCqxwGw59rMalDTFTkH99wSa6d4rHd3hEHLL6IKxSi55ZQRTcvGfmp2RGZNSl1yDPh87raDUTOtLcpXzJ6XjBjojd4-4dd9Nn1xbhOPOdY3PRb8rhi0WP1hfk4vo2ow3U87Jx_rpffVSbt6eX1cPm9JzrodSASqkkjsfah6cDB5YQABeCQVKVSY6FTFQ44wENNqYAMpFIeoQTaROzMn96Xef-q8D5sF2TfbYtm6H_SFbBorJCqRgI7o8oT71OSeMdp-azqWjZdT-mbCTCTuZEL8pb072</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671546531</pqid></control><display><type>article</type><title>Behavioral dynamics on the web: Learning, modeling, and prediction</title><source>ACM Digital Library Complete</source><creator>Radinsky, Kira ; Svore, Krysta M. ; Dumais, Susan T. ; Shokouhi, Milad ; Teevan, Jaime ; Bocharov, Alex ; Horvitz, Eric</creator><creatorcontrib>Radinsky, Kira ; Svore, Krysta M. ; Dumais, Susan T. ; Shokouhi, Milad ; Teevan, Jaime ; Bocharov, Alex ; Horvitz, Eric</creatorcontrib><description>The queries people issue to a search engine and the results clicked following a query change over time. For example, after the earthquake in Japan in March 2011, the query
japan
spiked in popularity and people issuing the query were more likely to click government-related results than they would prior to the earthquake. We explore the modeling and prediction of such temporal patterns in Web search behavior. We develop a temporal modeling framework adapted from physics and signal processing and harness it to predict temporal patterns in search behavior using smoothing, trends, periodicities, and surprises. Using current and past behavioral data, we develop a learning procedure that can be used to construct models of users' Web search activities. We also develop a novel methodology that learns to select the best prediction model from a family of predictive models for a given query or a class of queries. Experimental results indicate that the predictive models significantly outperform baseline models that weight historical evidence the same for all queries. We present two applications where new methods introduced for the temporal modeling of user behavior significantly improve upon the state of the art. Finally, we discuss opportunities for using models of temporal dynamics to enhance other areas of Web search and information retrieval.</description><identifier>ISSN: 1046-8188</identifier><identifier>EISSN: 1558-2868</identifier><identifier>DOI: 10.1145/2493175.2493181</identifier><language>eng</language><subject>Dynamics ; Information systems ; Learning ; Mathematical models ; Queries ; Searching ; Seismic phenomena ; Temporal logic</subject><ispartof>ACM transactions on information systems, 2013-07, Vol.31 (3), p.1-37</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-76e7e052acdb2da5dc61de66243767749fa7fed09a956e9899d67af33bdf9f0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Radinsky, Kira</creatorcontrib><creatorcontrib>Svore, Krysta M.</creatorcontrib><creatorcontrib>Dumais, Susan T.</creatorcontrib><creatorcontrib>Shokouhi, Milad</creatorcontrib><creatorcontrib>Teevan, Jaime</creatorcontrib><creatorcontrib>Bocharov, Alex</creatorcontrib><creatorcontrib>Horvitz, Eric</creatorcontrib><title>Behavioral dynamics on the web: Learning, modeling, and prediction</title><title>ACM transactions on information systems</title><description>The queries people issue to a search engine and the results clicked following a query change over time. For example, after the earthquake in Japan in March 2011, the query
japan
spiked in popularity and people issuing the query were more likely to click government-related results than they would prior to the earthquake. We explore the modeling and prediction of such temporal patterns in Web search behavior. We develop a temporal modeling framework adapted from physics and signal processing and harness it to predict temporal patterns in search behavior using smoothing, trends, periodicities, and surprises. Using current and past behavioral data, we develop a learning procedure that can be used to construct models of users' Web search activities. We also develop a novel methodology that learns to select the best prediction model from a family of predictive models for a given query or a class of queries. Experimental results indicate that the predictive models significantly outperform baseline models that weight historical evidence the same for all queries. We present two applications where new methods introduced for the temporal modeling of user behavior significantly improve upon the state of the art. Finally, we discuss opportunities for using models of temporal dynamics to enhance other areas of Web search and information retrieval.</description><subject>Dynamics</subject><subject>Information systems</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>Queries</subject><subject>Searching</subject><subject>Seismic phenomena</subject><subject>Temporal logic</subject><issn>1046-8188</issn><issn>1558-2868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotkD1PwzAURS0EEqUws6GMLGn9ET_bI1QUkCqxwGw59rMalDTFTkH99wSa6d4rHd3hEHLL6IKxSi55ZQRTcvGfmp2RGZNSl1yDPh87raDUTOtLcpXzJ6XjBjojd4-4dd9Nn1xbhOPOdY3PRb8rhi0WP1hfk4vo2ow3U87Jx_rpffVSbt6eX1cPm9JzrodSASqkkjsfah6cDB5YQABeCQVKVSY6FTFQ44wENNqYAMpFIeoQTaROzMn96Xef-q8D5sF2TfbYtm6H_SFbBorJCqRgI7o8oT71OSeMdp-azqWjZdT-mbCTCTuZEL8pb072</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Radinsky, Kira</creator><creator>Svore, Krysta M.</creator><creator>Dumais, Susan T.</creator><creator>Shokouhi, Milad</creator><creator>Teevan, Jaime</creator><creator>Bocharov, Alex</creator><creator>Horvitz, Eric</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130701</creationdate><title>Behavioral dynamics on the web</title><author>Radinsky, Kira ; Svore, Krysta M. ; Dumais, Susan T. ; Shokouhi, Milad ; Teevan, Jaime ; Bocharov, Alex ; Horvitz, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-76e7e052acdb2da5dc61de66243767749fa7fed09a956e9899d67af33bdf9f0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Dynamics</topic><topic>Information systems</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>Queries</topic><topic>Searching</topic><topic>Seismic phenomena</topic><topic>Temporal logic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radinsky, Kira</creatorcontrib><creatorcontrib>Svore, Krysta M.</creatorcontrib><creatorcontrib>Dumais, Susan T.</creatorcontrib><creatorcontrib>Shokouhi, Milad</creatorcontrib><creatorcontrib>Teevan, Jaime</creatorcontrib><creatorcontrib>Bocharov, Alex</creatorcontrib><creatorcontrib>Horvitz, Eric</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM transactions on information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radinsky, Kira</au><au>Svore, Krysta M.</au><au>Dumais, Susan T.</au><au>Shokouhi, Milad</au><au>Teevan, Jaime</au><au>Bocharov, Alex</au><au>Horvitz, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Behavioral dynamics on the web: Learning, modeling, and prediction</atitle><jtitle>ACM transactions on information systems</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>31</volume><issue>3</issue><spage>1</spage><epage>37</epage><pages>1-37</pages><issn>1046-8188</issn><eissn>1558-2868</eissn><abstract>The queries people issue to a search engine and the results clicked following a query change over time. For example, after the earthquake in Japan in March 2011, the query
japan
spiked in popularity and people issuing the query were more likely to click government-related results than they would prior to the earthquake. We explore the modeling and prediction of such temporal patterns in Web search behavior. We develop a temporal modeling framework adapted from physics and signal processing and harness it to predict temporal patterns in search behavior using smoothing, trends, periodicities, and surprises. Using current and past behavioral data, we develop a learning procedure that can be used to construct models of users' Web search activities. We also develop a novel methodology that learns to select the best prediction model from a family of predictive models for a given query or a class of queries. Experimental results indicate that the predictive models significantly outperform baseline models that weight historical evidence the same for all queries. We present two applications where new methods introduced for the temporal modeling of user behavior significantly improve upon the state of the art. Finally, we discuss opportunities for using models of temporal dynamics to enhance other areas of Web search and information retrieval.</abstract><doi>10.1145/2493175.2493181</doi><tpages>37</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1046-8188 |
ispartof | ACM transactions on information systems, 2013-07, Vol.31 (3), p.1-37 |
issn | 1046-8188 1558-2868 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671546531 |
source | ACM Digital Library Complete |
subjects | Dynamics Information systems Learning Mathematical models Queries Searching Seismic phenomena Temporal logic |
title | Behavioral dynamics on the web: Learning, modeling, and prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A35%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Behavioral%20dynamics%20on%20the%20web:%20Learning,%20modeling,%20and%20prediction&rft.jtitle=ACM%20transactions%20on%20information%20systems&rft.au=Radinsky,%20Kira&rft.date=2013-07-01&rft.volume=31&rft.issue=3&rft.spage=1&rft.epage=37&rft.pages=1-37&rft.issn=1046-8188&rft.eissn=1558-2868&rft_id=info:doi/10.1145/2493175.2493181&rft_dat=%3Cproquest_cross%3E1671546531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671546531&rft_id=info:pmid/&rfr_iscdi=true |