Behavioral dynamics on the web: Learning, modeling, and prediction

The queries people issue to a search engine and the results clicked following a query change over time. For example, after the earthquake in Japan in March 2011, the query japan spiked in popularity and people issuing the query were more likely to click government-related results than they would pri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on information systems 2013-07, Vol.31 (3), p.1-37
Hauptverfasser: Radinsky, Kira, Svore, Krysta M., Dumais, Susan T., Shokouhi, Milad, Teevan, Jaime, Bocharov, Alex, Horvitz, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue 3
container_start_page 1
container_title ACM transactions on information systems
container_volume 31
creator Radinsky, Kira
Svore, Krysta M.
Dumais, Susan T.
Shokouhi, Milad
Teevan, Jaime
Bocharov, Alex
Horvitz, Eric
description The queries people issue to a search engine and the results clicked following a query change over time. For example, after the earthquake in Japan in March 2011, the query japan spiked in popularity and people issuing the query were more likely to click government-related results than they would prior to the earthquake. We explore the modeling and prediction of such temporal patterns in Web search behavior. We develop a temporal modeling framework adapted from physics and signal processing and harness it to predict temporal patterns in search behavior using smoothing, trends, periodicities, and surprises. Using current and past behavioral data, we develop a learning procedure that can be used to construct models of users' Web search activities. We also develop a novel methodology that learns to select the best prediction model from a family of predictive models for a given query or a class of queries. Experimental results indicate that the predictive models significantly outperform baseline models that weight historical evidence the same for all queries. We present two applications where new methods introduced for the temporal modeling of user behavior significantly improve upon the state of the art. Finally, we discuss opportunities for using models of temporal dynamics to enhance other areas of Web search and information retrieval.
doi_str_mv 10.1145/2493175.2493181
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671546531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671546531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-76e7e052acdb2da5dc61de66243767749fa7fed09a956e9899d67af33bdf9f0a3</originalsourceid><addsrcrecordid>eNotkD1PwzAURS0EEqUws6GMLGn9ET_bI1QUkCqxwGw59rMalDTFTkH99wSa6d4rHd3hEHLL6IKxSi55ZQRTcvGfmp2RGZNSl1yDPh87raDUTOtLcpXzJ6XjBjojd4-4dd9Nn1xbhOPOdY3PRb8rhi0WP1hfk4vo2ow3U87Jx_rpffVSbt6eX1cPm9JzrodSASqkkjsfah6cDB5YQABeCQVKVSY6FTFQ44wENNqYAMpFIeoQTaROzMn96Xef-q8D5sF2TfbYtm6H_SFbBorJCqRgI7o8oT71OSeMdp-azqWjZdT-mbCTCTuZEL8pb072</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671546531</pqid></control><display><type>article</type><title>Behavioral dynamics on the web: Learning, modeling, and prediction</title><source>ACM Digital Library Complete</source><creator>Radinsky, Kira ; Svore, Krysta M. ; Dumais, Susan T. ; Shokouhi, Milad ; Teevan, Jaime ; Bocharov, Alex ; Horvitz, Eric</creator><creatorcontrib>Radinsky, Kira ; Svore, Krysta M. ; Dumais, Susan T. ; Shokouhi, Milad ; Teevan, Jaime ; Bocharov, Alex ; Horvitz, Eric</creatorcontrib><description>The queries people issue to a search engine and the results clicked following a query change over time. For example, after the earthquake in Japan in March 2011, the query japan spiked in popularity and people issuing the query were more likely to click government-related results than they would prior to the earthquake. We explore the modeling and prediction of such temporal patterns in Web search behavior. We develop a temporal modeling framework adapted from physics and signal processing and harness it to predict temporal patterns in search behavior using smoothing, trends, periodicities, and surprises. Using current and past behavioral data, we develop a learning procedure that can be used to construct models of users' Web search activities. We also develop a novel methodology that learns to select the best prediction model from a family of predictive models for a given query or a class of queries. Experimental results indicate that the predictive models significantly outperform baseline models that weight historical evidence the same for all queries. We present two applications where new methods introduced for the temporal modeling of user behavior significantly improve upon the state of the art. Finally, we discuss opportunities for using models of temporal dynamics to enhance other areas of Web search and information retrieval.</description><identifier>ISSN: 1046-8188</identifier><identifier>EISSN: 1558-2868</identifier><identifier>DOI: 10.1145/2493175.2493181</identifier><language>eng</language><subject>Dynamics ; Information systems ; Learning ; Mathematical models ; Queries ; Searching ; Seismic phenomena ; Temporal logic</subject><ispartof>ACM transactions on information systems, 2013-07, Vol.31 (3), p.1-37</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-76e7e052acdb2da5dc61de66243767749fa7fed09a956e9899d67af33bdf9f0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Radinsky, Kira</creatorcontrib><creatorcontrib>Svore, Krysta M.</creatorcontrib><creatorcontrib>Dumais, Susan T.</creatorcontrib><creatorcontrib>Shokouhi, Milad</creatorcontrib><creatorcontrib>Teevan, Jaime</creatorcontrib><creatorcontrib>Bocharov, Alex</creatorcontrib><creatorcontrib>Horvitz, Eric</creatorcontrib><title>Behavioral dynamics on the web: Learning, modeling, and prediction</title><title>ACM transactions on information systems</title><description>The queries people issue to a search engine and the results clicked following a query change over time. For example, after the earthquake in Japan in March 2011, the query japan spiked in popularity and people issuing the query were more likely to click government-related results than they would prior to the earthquake. We explore the modeling and prediction of such temporal patterns in Web search behavior. We develop a temporal modeling framework adapted from physics and signal processing and harness it to predict temporal patterns in search behavior using smoothing, trends, periodicities, and surprises. Using current and past behavioral data, we develop a learning procedure that can be used to construct models of users' Web search activities. We also develop a novel methodology that learns to select the best prediction model from a family of predictive models for a given query or a class of queries. Experimental results indicate that the predictive models significantly outperform baseline models that weight historical evidence the same for all queries. We present two applications where new methods introduced for the temporal modeling of user behavior significantly improve upon the state of the art. Finally, we discuss opportunities for using models of temporal dynamics to enhance other areas of Web search and information retrieval.</description><subject>Dynamics</subject><subject>Information systems</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>Queries</subject><subject>Searching</subject><subject>Seismic phenomena</subject><subject>Temporal logic</subject><issn>1046-8188</issn><issn>1558-2868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotkD1PwzAURS0EEqUws6GMLGn9ET_bI1QUkCqxwGw59rMalDTFTkH99wSa6d4rHd3hEHLL6IKxSi55ZQRTcvGfmp2RGZNSl1yDPh87raDUTOtLcpXzJ6XjBjojd4-4dd9Nn1xbhOPOdY3PRb8rhi0WP1hfk4vo2ow3U87Jx_rpffVSbt6eX1cPm9JzrodSASqkkjsfah6cDB5YQABeCQVKVSY6FTFQ44wENNqYAMpFIeoQTaROzMn96Xef-q8D5sF2TfbYtm6H_SFbBorJCqRgI7o8oT71OSeMdp-azqWjZdT-mbCTCTuZEL8pb072</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Radinsky, Kira</creator><creator>Svore, Krysta M.</creator><creator>Dumais, Susan T.</creator><creator>Shokouhi, Milad</creator><creator>Teevan, Jaime</creator><creator>Bocharov, Alex</creator><creator>Horvitz, Eric</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130701</creationdate><title>Behavioral dynamics on the web</title><author>Radinsky, Kira ; Svore, Krysta M. ; Dumais, Susan T. ; Shokouhi, Milad ; Teevan, Jaime ; Bocharov, Alex ; Horvitz, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-76e7e052acdb2da5dc61de66243767749fa7fed09a956e9899d67af33bdf9f0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Dynamics</topic><topic>Information systems</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>Queries</topic><topic>Searching</topic><topic>Seismic phenomena</topic><topic>Temporal logic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radinsky, Kira</creatorcontrib><creatorcontrib>Svore, Krysta M.</creatorcontrib><creatorcontrib>Dumais, Susan T.</creatorcontrib><creatorcontrib>Shokouhi, Milad</creatorcontrib><creatorcontrib>Teevan, Jaime</creatorcontrib><creatorcontrib>Bocharov, Alex</creatorcontrib><creatorcontrib>Horvitz, Eric</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM transactions on information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radinsky, Kira</au><au>Svore, Krysta M.</au><au>Dumais, Susan T.</au><au>Shokouhi, Milad</au><au>Teevan, Jaime</au><au>Bocharov, Alex</au><au>Horvitz, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Behavioral dynamics on the web: Learning, modeling, and prediction</atitle><jtitle>ACM transactions on information systems</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>31</volume><issue>3</issue><spage>1</spage><epage>37</epage><pages>1-37</pages><issn>1046-8188</issn><eissn>1558-2868</eissn><abstract>The queries people issue to a search engine and the results clicked following a query change over time. For example, after the earthquake in Japan in March 2011, the query japan spiked in popularity and people issuing the query were more likely to click government-related results than they would prior to the earthquake. We explore the modeling and prediction of such temporal patterns in Web search behavior. We develop a temporal modeling framework adapted from physics and signal processing and harness it to predict temporal patterns in search behavior using smoothing, trends, periodicities, and surprises. Using current and past behavioral data, we develop a learning procedure that can be used to construct models of users' Web search activities. We also develop a novel methodology that learns to select the best prediction model from a family of predictive models for a given query or a class of queries. Experimental results indicate that the predictive models significantly outperform baseline models that weight historical evidence the same for all queries. We present two applications where new methods introduced for the temporal modeling of user behavior significantly improve upon the state of the art. Finally, we discuss opportunities for using models of temporal dynamics to enhance other areas of Web search and information retrieval.</abstract><doi>10.1145/2493175.2493181</doi><tpages>37</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1046-8188
ispartof ACM transactions on information systems, 2013-07, Vol.31 (3), p.1-37
issn 1046-8188
1558-2868
language eng
recordid cdi_proquest_miscellaneous_1671546531
source ACM Digital Library Complete
subjects Dynamics
Information systems
Learning
Mathematical models
Queries
Searching
Seismic phenomena
Temporal logic
title Behavioral dynamics on the web: Learning, modeling, and prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A35%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Behavioral%20dynamics%20on%20the%20web:%20Learning,%20modeling,%20and%20prediction&rft.jtitle=ACM%20transactions%20on%20information%20systems&rft.au=Radinsky,%20Kira&rft.date=2013-07-01&rft.volume=31&rft.issue=3&rft.spage=1&rft.epage=37&rft.pages=1-37&rft.issn=1046-8188&rft.eissn=1558-2868&rft_id=info:doi/10.1145/2493175.2493181&rft_dat=%3Cproquest_cross%3E1671546531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671546531&rft_id=info:pmid/&rfr_iscdi=true