Temperature field of heat sources during fluid injection in an anisotropic inhomogeneous reservoir

The problem of the temperature field produced by sources whose position does not depend on the vertical coordinate and which are concentrated in a horizontal permeable layer surrounded by a heat-conducting medium with radial steady-state fluid flow. The problem is solved using an averagely accurate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mechanics and technical physics 2013-11, Vol.54 (6), p.945-959
Hauptverfasser: Filippov, A. I., Akhmetova, O. V., Kabirov, I. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 959
container_issue 6
container_start_page 945
container_title Journal of applied mechanics and technical physics
container_volume 54
creator Filippov, A. I.
Akhmetova, O. V.
Kabirov, I. F.
description The problem of the temperature field produced by sources whose position does not depend on the vertical coordinate and which are concentrated in a horizontal permeable layer surrounded by a heat-conducting medium with radial steady-state fluid flow. The problem is solved using an averagely accurate asymptotic method. Analytical expressions for the zero-order approximation and the first coefficient of the expansion. A condition is determined under which the averaged problem for the remainder term has a trivial solution.
doi_str_mv 10.1134/S0021894413060102
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671545840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671545840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-a89c5691b0d5924b8f444532bd6180407c819579baaf9ccd666a7ebce03beb3c3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG85eqlmmjRNjrL4BQseXM8lSae7WbpNTVrBf2_rehOEgRnmnXeYeQi5BnYLwMXdG2M5KC0EcCYZsPyELKAoeaZkzk7JYpazWT8nFyntGWNaQbkgdoOHHqMZxoi08djWNDR0h2agKYzRYaL1GH23pU07-pr6bo9u8KGbKmrm8CkMMfTeTZ1dOIQtdhjGRCMmjJ_Bx0ty1pg24dVvXpL3x4fN6jlbvz69rO7XmeM5DJlR2hVSg2V1oXNhVSOEKHhuawmKCVY6BbootTWm0c7VUkpTonXIuEXLHV-Sm-PePoaPEdNQHXxy2Lbm56AKZAmFKJRg0ygcR10MKUVsqj76g4lfFbBq5ln94Tl58qMn9TMPjNV-AtRNH_1j-gb28njQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671545840</pqid></control><display><type>article</type><title>Temperature field of heat sources during fluid injection in an anisotropic inhomogeneous reservoir</title><source>SpringerLink Journals - AutoHoldings</source><creator>Filippov, A. I. ; Akhmetova, O. V. ; Kabirov, I. F.</creator><creatorcontrib>Filippov, A. I. ; Akhmetova, O. V. ; Kabirov, I. F.</creatorcontrib><description>The problem of the temperature field produced by sources whose position does not depend on the vertical coordinate and which are concentrated in a horizontal permeable layer surrounded by a heat-conducting medium with radial steady-state fluid flow. The problem is solved using an averagely accurate asymptotic method. Analytical expressions for the zero-order approximation and the first coefficient of the expansion. A condition is determined under which the averaged problem for the remainder term has a trivial solution.</description><identifier>ISSN: 0021-8944</identifier><identifier>EISSN: 1573-8620</identifier><identifier>DOI: 10.1134/S0021894413060102</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applications of Mathematics ; Approximation ; Asymptotic methods ; Classical and Continuum Physics ; Classical Mechanics ; Exact solutions ; Fluid dynamics ; Fluid flow ; Fluid injection ; Fluid- and Aerodynamics ; Mathematical analysis ; Mathematical Modeling and Industrial Mathematics ; Mechanical Engineering ; Physics ; Physics and Astronomy ; Temperature distribution</subject><ispartof>Journal of applied mechanics and technical physics, 2013-11, Vol.54 (6), p.945-959</ispartof><rights>Pleiades Publishing, Ltd. 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-a89c5691b0d5924b8f444532bd6180407c819579baaf9ccd666a7ebce03beb3c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0021894413060102$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0021894413060102$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Filippov, A. I.</creatorcontrib><creatorcontrib>Akhmetova, O. V.</creatorcontrib><creatorcontrib>Kabirov, I. F.</creatorcontrib><title>Temperature field of heat sources during fluid injection in an anisotropic inhomogeneous reservoir</title><title>Journal of applied mechanics and technical physics</title><addtitle>J Appl Mech Tech Phy</addtitle><description>The problem of the temperature field produced by sources whose position does not depend on the vertical coordinate and which are concentrated in a horizontal permeable layer surrounded by a heat-conducting medium with radial steady-state fluid flow. The problem is solved using an averagely accurate asymptotic method. Analytical expressions for the zero-order approximation and the first coefficient of the expansion. A condition is determined under which the averaged problem for the remainder term has a trivial solution.</description><subject>Applications of Mathematics</subject><subject>Approximation</subject><subject>Asymptotic methods</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Exact solutions</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid injection</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical analysis</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mechanical Engineering</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Temperature distribution</subject><issn>0021-8944</issn><issn>1573-8620</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG85eqlmmjRNjrL4BQseXM8lSae7WbpNTVrBf2_rehOEgRnmnXeYeQi5BnYLwMXdG2M5KC0EcCYZsPyELKAoeaZkzk7JYpazWT8nFyntGWNaQbkgdoOHHqMZxoi08djWNDR0h2agKYzRYaL1GH23pU07-pr6bo9u8KGbKmrm8CkMMfTeTZ1dOIQtdhjGRCMmjJ_Bx0ty1pg24dVvXpL3x4fN6jlbvz69rO7XmeM5DJlR2hVSg2V1oXNhVSOEKHhuawmKCVY6BbootTWm0c7VUkpTonXIuEXLHV-Sm-PePoaPEdNQHXxy2Lbm56AKZAmFKJRg0ygcR10MKUVsqj76g4lfFbBq5ln94Tl58qMn9TMPjNV-AtRNH_1j-gb28njQ</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Filippov, A. I.</creator><creator>Akhmetova, O. V.</creator><creator>Kabirov, I. F.</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20131101</creationdate><title>Temperature field of heat sources during fluid injection in an anisotropic inhomogeneous reservoir</title><author>Filippov, A. I. ; Akhmetova, O. V. ; Kabirov, I. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-a89c5691b0d5924b8f444532bd6180407c819579baaf9ccd666a7ebce03beb3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applications of Mathematics</topic><topic>Approximation</topic><topic>Asymptotic methods</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Exact solutions</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid injection</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical analysis</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mechanical Engineering</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Temperature distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filippov, A. I.</creatorcontrib><creatorcontrib>Akhmetova, O. V.</creatorcontrib><creatorcontrib>Kabirov, I. F.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied mechanics and technical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filippov, A. I.</au><au>Akhmetova, O. V.</au><au>Kabirov, I. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature field of heat sources during fluid injection in an anisotropic inhomogeneous reservoir</atitle><jtitle>Journal of applied mechanics and technical physics</jtitle><stitle>J Appl Mech Tech Phy</stitle><date>2013-11-01</date><risdate>2013</risdate><volume>54</volume><issue>6</issue><spage>945</spage><epage>959</epage><pages>945-959</pages><issn>0021-8944</issn><eissn>1573-8620</eissn><abstract>The problem of the temperature field produced by sources whose position does not depend on the vertical coordinate and which are concentrated in a horizontal permeable layer surrounded by a heat-conducting medium with radial steady-state fluid flow. The problem is solved using an averagely accurate asymptotic method. Analytical expressions for the zero-order approximation and the first coefficient of the expansion. A condition is determined under which the averaged problem for the remainder term has a trivial solution.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1134/S0021894413060102</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8944
ispartof Journal of applied mechanics and technical physics, 2013-11, Vol.54 (6), p.945-959
issn 0021-8944
1573-8620
language eng
recordid cdi_proquest_miscellaneous_1671545840
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Approximation
Asymptotic methods
Classical and Continuum Physics
Classical Mechanics
Exact solutions
Fluid dynamics
Fluid flow
Fluid injection
Fluid- and Aerodynamics
Mathematical analysis
Mathematical Modeling and Industrial Mathematics
Mechanical Engineering
Physics
Physics and Astronomy
Temperature distribution
title Temperature field of heat sources during fluid injection in an anisotropic inhomogeneous reservoir
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A08%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20field%20of%20heat%20sources%20during%20fluid%20injection%20in%20an%20anisotropic%20inhomogeneous%20reservoir&rft.jtitle=Journal%20of%20applied%20mechanics%20and%20technical%20physics&rft.au=Filippov,%20A.%20I.&rft.date=2013-11-01&rft.volume=54&rft.issue=6&rft.spage=945&rft.epage=959&rft.pages=945-959&rft.issn=0021-8944&rft.eissn=1573-8620&rft_id=info:doi/10.1134/S0021894413060102&rft_dat=%3Cproquest_cross%3E1671545840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671545840&rft_id=info:pmid/&rfr_iscdi=true