Development of an attached-growth process for the on-site bioremediation of an aquifer polluted by chlorinated solvents
A procedure for the design of an aerobic cometabolic process for the on-site degradation of chlorinated solvents in a packed bed reactor was developed using groundwater from an aquifer contaminated by trichloroethylene (TCE) and 1,1,2,2-tetrachloroethane (TeCA). The work led to the selection of buta...
Gespeichert in:
Veröffentlicht in: | Biodegradation (Dordrecht) 2014-06, Vol.25 (3), p.337-350 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 350 |
---|---|
container_issue | 3 |
container_start_page | 337 |
container_title | Biodegradation (Dordrecht) |
container_volume | 25 |
creator | Frascari, Dario Bucchi, Giacomo Doria, Francesco Rosato, Antonella Tavanaie, Nasrin Salviulo, Raffaele Ciavarelli, Roberta Pinelli, Davide Fraraccio, Serena Zanaroli, Giulio Fava, Fabio |
description | A procedure for the design of an aerobic cometabolic process for the on-site degradation of chlorinated solvents in a packed bed reactor was developed using groundwater from an aquifer contaminated by trichloroethylene (TCE) and 1,1,2,2-tetrachloroethane (TeCA). The work led to the selection of butane among five tested growth substrates, and to the development and characterization from the site’s indigenous biomass of a suspended-cell consortium capable to degrade TCE (first order constant: 96 L g
protein
–1
day
–1
at 30 °C and 4.3 L g
protein
–1
day
–1
at 15 °C) with a 90 % mineralization of the organic chlorine. The consortium immobilization had strong effects on the butane and TCE degradation rates. The microbial community structure was slightly changed by a temperature shift from 30 to 15 °C, but remarkably affected by biomass adhesion. Given the higher TCE normalized degradation rate (0.59 day
–1
at 15 °C) and attached biomass concentration (0.13 g
protein
L
bioreactor
–1
at 15 °C) attained, the porous ceramic carrier Biomax was selected as the best option for the packed bed reactor process. The low TeCA degradation rate exhibited by the developed consortium suggested the inclusion of a chemical pre-treatment based on the TeCA to TCE conversion via β-elimination, a very fast reaction at alkaline pH. To the best of the authors’ knowledge, this represents the first attempt to develop a procedure for the development of a packed bed reactor process for the aerobic cometabolism of chlorinated solvents. |
doi_str_mv | 10.1007/s10532-013-9664-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671543406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A712296202</galeid><sourcerecordid>A712296202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-242bb288a7c22eddd08c0b03c087a05d056417b2ebc17c7a90ef12cf4be178463</originalsourceid><addsrcrecordid>eNqNkk9r3DAQxU1pabZpP0AvRVAKvTgdjWXJPob0LwR6ac9Glse7Cl5pI8kJyaevjDdtKRSCDkKa39ObQa8oXnM44wDqQ-RQV1gCr8pWSlHePyk2vFZYtgrbp8UGWsyVBuGkeBHjFQC0CvB5cYICWllXfFPcfqQbmvxhTy4xPzLtmE5Jmx0N5Tb427Rjh-ANxchGH1jaEfOujDYR660PtKfB6mS9exBfz3akwA5-muZEA-vvmNlNPlinl2P00022ii-LZ6OeIr067qfFz8-fflx8LS-_f_l2cX5ZmhpUKlFg32PTaGUQaRgGaAz0UBlolIZ6gFoKrnqk3nBllG6BRo5mFD1x1QhZnRbv13fzFNczxdTtbTQ0TdqRn2PHpeK1qAQ8Aq1RCC6kgkegvMmtS7mgb_9Br_wcXJ55oVQtEMRCna3UVk_UWTf6FLTJa6C9Nd7RaPP9ueKIrUTALOCrwAQfY6CxOwS71-Gu49At4ejWcHQ5HN0Sju4-a94cW5n7_G-_FQ9pyMC7I6Cj0dMYtDM2_uEaCW22zxyuXMwlt6Xw10z_df8FXkrRhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1517542040</pqid></control><display><type>article</type><title>Development of an attached-growth process for the on-site bioremediation of an aquifer polluted by chlorinated solvents</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Frascari, Dario ; Bucchi, Giacomo ; Doria, Francesco ; Rosato, Antonella ; Tavanaie, Nasrin ; Salviulo, Raffaele ; Ciavarelli, Roberta ; Pinelli, Davide ; Fraraccio, Serena ; Zanaroli, Giulio ; Fava, Fabio</creator><creatorcontrib>Frascari, Dario ; Bucchi, Giacomo ; Doria, Francesco ; Rosato, Antonella ; Tavanaie, Nasrin ; Salviulo, Raffaele ; Ciavarelli, Roberta ; Pinelli, Davide ; Fraraccio, Serena ; Zanaroli, Giulio ; Fava, Fabio</creatorcontrib><description>A procedure for the design of an aerobic cometabolic process for the on-site degradation of chlorinated solvents in a packed bed reactor was developed using groundwater from an aquifer contaminated by trichloroethylene (TCE) and 1,1,2,2-tetrachloroethane (TeCA). The work led to the selection of butane among five tested growth substrates, and to the development and characterization from the site’s indigenous biomass of a suspended-cell consortium capable to degrade TCE (first order constant: 96 L g
protein
–1
day
–1
at 30 °C and 4.3 L g
protein
–1
day
–1
at 15 °C) with a 90 % mineralization of the organic chlorine. The consortium immobilization had strong effects on the butane and TCE degradation rates. The microbial community structure was slightly changed by a temperature shift from 30 to 15 °C, but remarkably affected by biomass adhesion. Given the higher TCE normalized degradation rate (0.59 day
–1
at 15 °C) and attached biomass concentration (0.13 g
protein
L
bioreactor
–1
at 15 °C) attained, the porous ceramic carrier Biomax was selected as the best option for the packed bed reactor process. The low TeCA degradation rate exhibited by the developed consortium suggested the inclusion of a chemical pre-treatment based on the TeCA to TCE conversion via β-elimination, a very fast reaction at alkaline pH. To the best of the authors’ knowledge, this represents the first attempt to develop a procedure for the development of a packed bed reactor process for the aerobic cometabolism of chlorinated solvents.</description><identifier>ISSN: 0923-9820</identifier><identifier>EISSN: 1572-9729</identifier><identifier>DOI: 10.1007/s10532-013-9664-z</identifier><identifier>PMID: 24096531</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aquatic Pollution ; Aquifers ; Biodegradation ; Biodegradation of pollutants ; Biodegradation, Environmental ; Biological and medical sciences ; Biomass ; Biomedical and Life Sciences ; Bioreactors ; Bioremediation ; Biotechnology ; Butane ; Butanes ; Butanes - metabolism ; Chemical contaminants ; Chlorination ; Chlorine ; Community structure ; Consortia ; Degradation ; Environment and pollution ; Ethane - analogs & derivatives ; Ethane - metabolism ; Fundamental and applied biological sciences. Psychology ; Geochemistry ; Groundwater - chemistry ; Groundwater - microbiology ; Growth ; Hydrocarbons, Chlorinated - metabolism ; Hydrogen-Ion Concentration ; Industrial applications and implications. Economical aspects ; Kinetics ; Life Sciences ; Microbial Consortia - physiology ; Microbiology ; Microorganisms ; Mineralization ; Original Article ; Pollution ; Proteins ; Reactors ; Soil Science & Conservation ; Solvents ; Temperature ; Terrestrial Pollution ; Trichloroethene ; Trichloroethylene ; Trichloroethylene - metabolism ; Waste Management/Waste Technology ; Waste Water Technology ; Water Management ; Water Pollutants, Chemical - metabolism ; Water Pollution Control ; Water, Underground</subject><ispartof>Biodegradation (Dordrecht), 2014-06, Vol.25 (3), p.337-350</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2014 Springer</rights><rights>Springer Science+Business Media Dordrecht 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-242bb288a7c22eddd08c0b03c087a05d056417b2ebc17c7a90ef12cf4be178463</citedby><cites>FETCH-LOGICAL-c507t-242bb288a7c22eddd08c0b03c087a05d056417b2ebc17c7a90ef12cf4be178463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10532-013-9664-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10532-013-9664-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28609962$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24096531$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Frascari, Dario</creatorcontrib><creatorcontrib>Bucchi, Giacomo</creatorcontrib><creatorcontrib>Doria, Francesco</creatorcontrib><creatorcontrib>Rosato, Antonella</creatorcontrib><creatorcontrib>Tavanaie, Nasrin</creatorcontrib><creatorcontrib>Salviulo, Raffaele</creatorcontrib><creatorcontrib>Ciavarelli, Roberta</creatorcontrib><creatorcontrib>Pinelli, Davide</creatorcontrib><creatorcontrib>Fraraccio, Serena</creatorcontrib><creatorcontrib>Zanaroli, Giulio</creatorcontrib><creatorcontrib>Fava, Fabio</creatorcontrib><title>Development of an attached-growth process for the on-site bioremediation of an aquifer polluted by chlorinated solvents</title><title>Biodegradation (Dordrecht)</title><addtitle>Biodegradation</addtitle><addtitle>Biodegradation</addtitle><description>A procedure for the design of an aerobic cometabolic process for the on-site degradation of chlorinated solvents in a packed bed reactor was developed using groundwater from an aquifer contaminated by trichloroethylene (TCE) and 1,1,2,2-tetrachloroethane (TeCA). The work led to the selection of butane among five tested growth substrates, and to the development and characterization from the site’s indigenous biomass of a suspended-cell consortium capable to degrade TCE (first order constant: 96 L g
protein
–1
day
–1
at 30 °C and 4.3 L g
protein
–1
day
–1
at 15 °C) with a 90 % mineralization of the organic chlorine. The consortium immobilization had strong effects on the butane and TCE degradation rates. The microbial community structure was slightly changed by a temperature shift from 30 to 15 °C, but remarkably affected by biomass adhesion. Given the higher TCE normalized degradation rate (0.59 day
–1
at 15 °C) and attached biomass concentration (0.13 g
protein
L
bioreactor
–1
at 15 °C) attained, the porous ceramic carrier Biomax was selected as the best option for the packed bed reactor process. The low TeCA degradation rate exhibited by the developed consortium suggested the inclusion of a chemical pre-treatment based on the TeCA to TCE conversion via β-elimination, a very fast reaction at alkaline pH. To the best of the authors’ knowledge, this represents the first attempt to develop a procedure for the development of a packed bed reactor process for the aerobic cometabolism of chlorinated solvents.</description><subject>Aquatic Pollution</subject><subject>Aquifers</subject><subject>Biodegradation</subject><subject>Biodegradation of pollutants</subject><subject>Biodegradation, Environmental</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Bioreactors</subject><subject>Bioremediation</subject><subject>Biotechnology</subject><subject>Butane</subject><subject>Butanes</subject><subject>Butanes - metabolism</subject><subject>Chemical contaminants</subject><subject>Chlorination</subject><subject>Chlorine</subject><subject>Community structure</subject><subject>Consortia</subject><subject>Degradation</subject><subject>Environment and pollution</subject><subject>Ethane - analogs & derivatives</subject><subject>Ethane - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Geochemistry</subject><subject>Groundwater - chemistry</subject><subject>Groundwater - microbiology</subject><subject>Growth</subject><subject>Hydrocarbons, Chlorinated - metabolism</subject><subject>Hydrogen-Ion Concentration</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Microbial Consortia - physiology</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Mineralization</subject><subject>Original Article</subject><subject>Pollution</subject><subject>Proteins</subject><subject>Reactors</subject><subject>Soil Science & Conservation</subject><subject>Solvents</subject><subject>Temperature</subject><subject>Terrestrial Pollution</subject><subject>Trichloroethene</subject><subject>Trichloroethylene</subject><subject>Trichloroethylene - metabolism</subject><subject>Waste Management/Waste Technology</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollutants, Chemical - metabolism</subject><subject>Water Pollution Control</subject><subject>Water, Underground</subject><issn>0923-9820</issn><issn>1572-9729</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkk9r3DAQxU1pabZpP0AvRVAKvTgdjWXJPob0LwR6ac9Glse7Cl5pI8kJyaevjDdtKRSCDkKa39ObQa8oXnM44wDqQ-RQV1gCr8pWSlHePyk2vFZYtgrbp8UGWsyVBuGkeBHjFQC0CvB5cYICWllXfFPcfqQbmvxhTy4xPzLtmE5Jmx0N5Tb427Rjh-ANxchGH1jaEfOujDYR660PtKfB6mS9exBfz3akwA5-muZEA-vvmNlNPlinl2P00022ii-LZ6OeIr067qfFz8-fflx8LS-_f_l2cX5ZmhpUKlFg32PTaGUQaRgGaAz0UBlolIZ6gFoKrnqk3nBllG6BRo5mFD1x1QhZnRbv13fzFNczxdTtbTQ0TdqRn2PHpeK1qAQ8Aq1RCC6kgkegvMmtS7mgb_9Br_wcXJ55oVQtEMRCna3UVk_UWTf6FLTJa6C9Nd7RaPP9ueKIrUTALOCrwAQfY6CxOwS71-Gu49At4ejWcHQ5HN0Sju4-a94cW5n7_G-_FQ9pyMC7I6Cj0dMYtDM2_uEaCW22zxyuXMwlt6Xw10z_df8FXkrRhQ</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Frascari, Dario</creator><creator>Bucchi, Giacomo</creator><creator>Doria, Francesco</creator><creator>Rosato, Antonella</creator><creator>Tavanaie, Nasrin</creator><creator>Salviulo, Raffaele</creator><creator>Ciavarelli, Roberta</creator><creator>Pinelli, Davide</creator><creator>Fraraccio, Serena</creator><creator>Zanaroli, Giulio</creator><creator>Fava, Fabio</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>SOI</scope><scope>7X8</scope><scope>7QH</scope><scope>7QO</scope><scope>7TV</scope><scope>H96</scope><scope>7QQ</scope><scope>7SU</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20140601</creationdate><title>Development of an attached-growth process for the on-site bioremediation of an aquifer polluted by chlorinated solvents</title><author>Frascari, Dario ; Bucchi, Giacomo ; Doria, Francesco ; Rosato, Antonella ; Tavanaie, Nasrin ; Salviulo, Raffaele ; Ciavarelli, Roberta ; Pinelli, Davide ; Fraraccio, Serena ; Zanaroli, Giulio ; Fava, Fabio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-242bb288a7c22eddd08c0b03c087a05d056417b2ebc17c7a90ef12cf4be178463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aquatic Pollution</topic><topic>Aquifers</topic><topic>Biodegradation</topic><topic>Biodegradation of pollutants</topic><topic>Biodegradation, Environmental</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Bioreactors</topic><topic>Bioremediation</topic><topic>Biotechnology</topic><topic>Butane</topic><topic>Butanes</topic><topic>Butanes - metabolism</topic><topic>Chemical contaminants</topic><topic>Chlorination</topic><topic>Chlorine</topic><topic>Community structure</topic><topic>Consortia</topic><topic>Degradation</topic><topic>Environment and pollution</topic><topic>Ethane - analogs & derivatives</topic><topic>Ethane - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Geochemistry</topic><topic>Groundwater - chemistry</topic><topic>Groundwater - microbiology</topic><topic>Growth</topic><topic>Hydrocarbons, Chlorinated - metabolism</topic><topic>Hydrogen-Ion Concentration</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Microbial Consortia - physiology</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Mineralization</topic><topic>Original Article</topic><topic>Pollution</topic><topic>Proteins</topic><topic>Reactors</topic><topic>Soil Science & Conservation</topic><topic>Solvents</topic><topic>Temperature</topic><topic>Terrestrial Pollution</topic><topic>Trichloroethene</topic><topic>Trichloroethylene</topic><topic>Trichloroethylene - metabolism</topic><topic>Waste Management/Waste Technology</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollutants, Chemical - metabolism</topic><topic>Water Pollution Control</topic><topic>Water, Underground</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frascari, Dario</creatorcontrib><creatorcontrib>Bucchi, Giacomo</creatorcontrib><creatorcontrib>Doria, Francesco</creatorcontrib><creatorcontrib>Rosato, Antonella</creatorcontrib><creatorcontrib>Tavanaie, Nasrin</creatorcontrib><creatorcontrib>Salviulo, Raffaele</creatorcontrib><creatorcontrib>Ciavarelli, Roberta</creatorcontrib><creatorcontrib>Pinelli, Davide</creatorcontrib><creatorcontrib>Fraraccio, Serena</creatorcontrib><creatorcontrib>Zanaroli, Giulio</creatorcontrib><creatorcontrib>Fava, Fabio</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Pollution Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Ceramic Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Biodegradation (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frascari, Dario</au><au>Bucchi, Giacomo</au><au>Doria, Francesco</au><au>Rosato, Antonella</au><au>Tavanaie, Nasrin</au><au>Salviulo, Raffaele</au><au>Ciavarelli, Roberta</au><au>Pinelli, Davide</au><au>Fraraccio, Serena</au><au>Zanaroli, Giulio</au><au>Fava, Fabio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of an attached-growth process for the on-site bioremediation of an aquifer polluted by chlorinated solvents</atitle><jtitle>Biodegradation (Dordrecht)</jtitle><stitle>Biodegradation</stitle><addtitle>Biodegradation</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>25</volume><issue>3</issue><spage>337</spage><epage>350</epage><pages>337-350</pages><issn>0923-9820</issn><eissn>1572-9729</eissn><abstract>A procedure for the design of an aerobic cometabolic process for the on-site degradation of chlorinated solvents in a packed bed reactor was developed using groundwater from an aquifer contaminated by trichloroethylene (TCE) and 1,1,2,2-tetrachloroethane (TeCA). The work led to the selection of butane among five tested growth substrates, and to the development and characterization from the site’s indigenous biomass of a suspended-cell consortium capable to degrade TCE (first order constant: 96 L g
protein
–1
day
–1
at 30 °C and 4.3 L g
protein
–1
day
–1
at 15 °C) with a 90 % mineralization of the organic chlorine. The consortium immobilization had strong effects on the butane and TCE degradation rates. The microbial community structure was slightly changed by a temperature shift from 30 to 15 °C, but remarkably affected by biomass adhesion. Given the higher TCE normalized degradation rate (0.59 day
–1
at 15 °C) and attached biomass concentration (0.13 g
protein
L
bioreactor
–1
at 15 °C) attained, the porous ceramic carrier Biomax was selected as the best option for the packed bed reactor process. The low TeCA degradation rate exhibited by the developed consortium suggested the inclusion of a chemical pre-treatment based on the TeCA to TCE conversion via β-elimination, a very fast reaction at alkaline pH. To the best of the authors’ knowledge, this represents the first attempt to develop a procedure for the development of a packed bed reactor process for the aerobic cometabolism of chlorinated solvents.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>24096531</pmid><doi>10.1007/s10532-013-9664-z</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0923-9820 |
ispartof | Biodegradation (Dordrecht), 2014-06, Vol.25 (3), p.337-350 |
issn | 0923-9820 1572-9729 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671543406 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Aquatic Pollution Aquifers Biodegradation Biodegradation of pollutants Biodegradation, Environmental Biological and medical sciences Biomass Biomedical and Life Sciences Bioreactors Bioremediation Biotechnology Butane Butanes Butanes - metabolism Chemical contaminants Chlorination Chlorine Community structure Consortia Degradation Environment and pollution Ethane - analogs & derivatives Ethane - metabolism Fundamental and applied biological sciences. Psychology Geochemistry Groundwater - chemistry Groundwater - microbiology Growth Hydrocarbons, Chlorinated - metabolism Hydrogen-Ion Concentration Industrial applications and implications. Economical aspects Kinetics Life Sciences Microbial Consortia - physiology Microbiology Microorganisms Mineralization Original Article Pollution Proteins Reactors Soil Science & Conservation Solvents Temperature Terrestrial Pollution Trichloroethene Trichloroethylene Trichloroethylene - metabolism Waste Management/Waste Technology Waste Water Technology Water Management Water Pollutants, Chemical - metabolism Water Pollution Control Water, Underground |
title | Development of an attached-growth process for the on-site bioremediation of an aquifer polluted by chlorinated solvents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A16%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20an%20attached-growth%20process%20for%20the%20on-site%20bioremediation%20of%20an%20aquifer%20polluted%20by%20chlorinated%20solvents&rft.jtitle=Biodegradation%20(Dordrecht)&rft.au=Frascari,%20Dario&rft.date=2014-06-01&rft.volume=25&rft.issue=3&rft.spage=337&rft.epage=350&rft.pages=337-350&rft.issn=0923-9820&rft.eissn=1572-9729&rft_id=info:doi/10.1007/s10532-013-9664-z&rft_dat=%3Cgale_proqu%3EA712296202%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1517542040&rft_id=info:pmid/24096531&rft_galeid=A712296202&rfr_iscdi=true |