Basic Network Creation Games
We study a natural network creation game, in which each node locally tries to minimize its local diameter or its local average distance to other nodes by swapping one incident edge at a time. The central question is what structure the resulting equilibrium graphs have, in particular, how well they g...
Gespeichert in:
Veröffentlicht in: | SIAM journal on discrete mathematics 2013-01, Vol.27 (2), p.656-668 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 668 |
---|---|
container_issue | 2 |
container_start_page | 656 |
container_title | SIAM journal on discrete mathematics |
container_volume | 27 |
creator | Alon, Noga Demaine, Erik D Hajiaghayi, Mohammad T Leighton, Tom |
description | We study a natural network creation game, in which each node locally tries to minimize its local diameter or its local average distance to other nodes by swapping one incident edge at a time. The central question is what structure the resulting equilibrium graphs have, in particular, how well they globally minimize diameter. For the local-average-distance version, we prove an upper bound of $2^{O(\sqrt{\lg n})}$, a lower bound of 3, and a tight bound of exactly 2 for trees, and give evidence of a general polylogarithmic upper bound. For the local-diameter version, we prove a lower bound of $\Omega(\sqrt{n})$ and a tight upper bound of 3 for trees. The same bounds apply, up to constant factors, to the price of anarchy. Our network creation games are closely related to the previously studied unilateral network creation game. The main difference is that our model has no parameter $\alpha$ for the link creation cost, so our results effectively apply for all values of $\alpha$ without additional effort; furthermore, equilibrium can be checked in polynomial time in our model, unlike in previous models. Our perspective enables simpler proofs that get at the heart of network creation games. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1137/090771478 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671540166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2941743421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-8407550e642232dfebd0b09463ca3b4d33d0de656c48ad74e3f461f87d81d68e3</originalsourceid><addsrcrecordid>eNpdkM1Lw0AUxBdRMFYP3j0EvOgh-l727UePWrQKRS96XrbZF0htkrqbIv73jVQ8eJoZ-DEMI8Q5wg2iNLcwBWOQjD0QGcJUFWPQhyIDO3qygMfiJKUVABKhysTFvU9Nlb_w8NXHj3wW2Q9N3-Vz33I6FUe1Xyc--9WJeH98eJs9FYvX-fPsblFUslRDYQmMUsCaylKWoeZlgCVMScvKyyUFKQME1kpXZH0wxLImjbU1wWLQluVEXO17N7H_3HIaXNukitdr33G_TQ61QUWAWo_o5T901W9jN65zOI5R1tiSRup6T1WxTyly7TaxaX38dgju5yf395PcAa6IVjo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325587824</pqid></control><display><type>article</type><title>Basic Network Creation Games</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>Alon, Noga ; Demaine, Erik D ; Hajiaghayi, Mohammad T ; Leighton, Tom</creator><creatorcontrib>Alon, Noga ; Demaine, Erik D ; Hajiaghayi, Mohammad T ; Leighton, Tom</creatorcontrib><description>We study a natural network creation game, in which each node locally tries to minimize its local diameter or its local average distance to other nodes by swapping one incident edge at a time. The central question is what structure the resulting equilibrium graphs have, in particular, how well they globally minimize diameter. For the local-average-distance version, we prove an upper bound of $2^{O(\sqrt{\lg n})}$, a lower bound of 3, and a tight bound of exactly 2 for trees, and give evidence of a general polylogarithmic upper bound. For the local-diameter version, we prove a lower bound of $\Omega(\sqrt{n})$ and a tight upper bound of 3 for trees. The same bounds apply, up to constant factors, to the price of anarchy. Our network creation games are closely related to the previously studied unilateral network creation game. The main difference is that our model has no parameter $\alpha$ for the link creation cost, so our results effectively apply for all values of $\alpha$ without additional effort; furthermore, equilibrium can be checked in polynomial time in our model, unlike in previous models. Our perspective enables simpler proofs that get at the heart of network creation games. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0895-4801</identifier><identifier>EISSN: 1095-7146</identifier><identifier>DOI: 10.1137/090771478</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Applied mathematics ; Computer science ; Equilibrium ; Games ; Graphs ; Links ; Lower bounds ; Mathematical models ; Networks ; Trees ; Upper bounds</subject><ispartof>SIAM journal on discrete mathematics, 2013-01, Vol.27 (2), p.656-668</ispartof><rights>2013, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-8407550e642232dfebd0b09463ca3b4d33d0de656c48ad74e3f461f87d81d68e3</citedby><cites>FETCH-LOGICAL-c325t-8407550e642232dfebd0b09463ca3b4d33d0de656c48ad74e3f461f87d81d68e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3185,27924,27925</link.rule.ids></links><search><creatorcontrib>Alon, Noga</creatorcontrib><creatorcontrib>Demaine, Erik D</creatorcontrib><creatorcontrib>Hajiaghayi, Mohammad T</creatorcontrib><creatorcontrib>Leighton, Tom</creatorcontrib><title>Basic Network Creation Games</title><title>SIAM journal on discrete mathematics</title><description>We study a natural network creation game, in which each node locally tries to minimize its local diameter or its local average distance to other nodes by swapping one incident edge at a time. The central question is what structure the resulting equilibrium graphs have, in particular, how well they globally minimize diameter. For the local-average-distance version, we prove an upper bound of $2^{O(\sqrt{\lg n})}$, a lower bound of 3, and a tight bound of exactly 2 for trees, and give evidence of a general polylogarithmic upper bound. For the local-diameter version, we prove a lower bound of $\Omega(\sqrt{n})$ and a tight upper bound of 3 for trees. The same bounds apply, up to constant factors, to the price of anarchy. Our network creation games are closely related to the previously studied unilateral network creation game. The main difference is that our model has no parameter $\alpha$ for the link creation cost, so our results effectively apply for all values of $\alpha$ without additional effort; furthermore, equilibrium can be checked in polynomial time in our model, unlike in previous models. Our perspective enables simpler proofs that get at the heart of network creation games. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Computer science</subject><subject>Equilibrium</subject><subject>Games</subject><subject>Graphs</subject><subject>Links</subject><subject>Lower bounds</subject><subject>Mathematical models</subject><subject>Networks</subject><subject>Trees</subject><subject>Upper bounds</subject><issn>0895-4801</issn><issn>1095-7146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkM1Lw0AUxBdRMFYP3j0EvOgh-l727UePWrQKRS96XrbZF0htkrqbIv73jVQ8eJoZ-DEMI8Q5wg2iNLcwBWOQjD0QGcJUFWPQhyIDO3qygMfiJKUVABKhysTFvU9Nlb_w8NXHj3wW2Q9N3-Vz33I6FUe1Xyc--9WJeH98eJs9FYvX-fPsblFUslRDYQmMUsCaylKWoeZlgCVMScvKyyUFKQME1kpXZH0wxLImjbU1wWLQluVEXO17N7H_3HIaXNukitdr33G_TQ61QUWAWo_o5T901W9jN65zOI5R1tiSRup6T1WxTyly7TaxaX38dgju5yf395PcAa6IVjo</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Alon, Noga</creator><creator>Demaine, Erik D</creator><creator>Hajiaghayi, Mohammad T</creator><creator>Leighton, Tom</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130101</creationdate><title>Basic Network Creation Games</title><author>Alon, Noga ; Demaine, Erik D ; Hajiaghayi, Mohammad T ; Leighton, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-8407550e642232dfebd0b09463ca3b4d33d0de656c48ad74e3f461f87d81d68e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Computer science</topic><topic>Equilibrium</topic><topic>Games</topic><topic>Graphs</topic><topic>Links</topic><topic>Lower bounds</topic><topic>Mathematical models</topic><topic>Networks</topic><topic>Trees</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alon, Noga</creatorcontrib><creatorcontrib>Demaine, Erik D</creatorcontrib><creatorcontrib>Hajiaghayi, Mohammad T</creatorcontrib><creatorcontrib>Leighton, Tom</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alon, Noga</au><au>Demaine, Erik D</au><au>Hajiaghayi, Mohammad T</au><au>Leighton, Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Basic Network Creation Games</atitle><jtitle>SIAM journal on discrete mathematics</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>27</volume><issue>2</issue><spage>656</spage><epage>668</epage><pages>656-668</pages><issn>0895-4801</issn><eissn>1095-7146</eissn><abstract>We study a natural network creation game, in which each node locally tries to minimize its local diameter or its local average distance to other nodes by swapping one incident edge at a time. The central question is what structure the resulting equilibrium graphs have, in particular, how well they globally minimize diameter. For the local-average-distance version, we prove an upper bound of $2^{O(\sqrt{\lg n})}$, a lower bound of 3, and a tight bound of exactly 2 for trees, and give evidence of a general polylogarithmic upper bound. For the local-diameter version, we prove a lower bound of $\Omega(\sqrt{n})$ and a tight upper bound of 3 for trees. The same bounds apply, up to constant factors, to the price of anarchy. Our network creation games are closely related to the previously studied unilateral network creation game. The main difference is that our model has no parameter $\alpha$ for the link creation cost, so our results effectively apply for all values of $\alpha$ without additional effort; furthermore, equilibrium can be checked in polynomial time in our model, unlike in previous models. Our perspective enables simpler proofs that get at the heart of network creation games. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/090771478</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-4801 |
ispartof | SIAM journal on discrete mathematics, 2013-01, Vol.27 (2), p.656-668 |
issn | 0895-4801 1095-7146 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671540166 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Algorithms Applied mathematics Computer science Equilibrium Games Graphs Links Lower bounds Mathematical models Networks Trees Upper bounds |
title | Basic Network Creation Games |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A45%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Basic%20Network%20Creation%20Games&rft.jtitle=SIAM%20journal%20on%20discrete%20mathematics&rft.au=Alon,%20Noga&rft.date=2013-01-01&rft.volume=27&rft.issue=2&rft.spage=656&rft.epage=668&rft.pages=656-668&rft.issn=0895-4801&rft.eissn=1095-7146&rft_id=info:doi/10.1137/090771478&rft_dat=%3Cproquest_cross%3E2941743421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1325587824&rft_id=info:pmid/&rfr_iscdi=true |