Study of convergence rate and efficiency of two-phase methods for approximating the Edgeworth-Pareto hull

The convergence rate and efficiency of two-phase methods for approximating the Edgeworth-Pareto hull in nonlinear multicriteria optimization problems is studied. A feature of two-phase methods is that the criteria images of randomly generated points of the decision space approach the Pareto frontier...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2013-04, Vol.53 (4), p.375-385
1. Verfasser: Kamenev, G. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 385
container_issue 4
container_start_page 375
container_title Computational mathematics and mathematical physics
container_volume 53
creator Kamenev, G. K.
description The convergence rate and efficiency of two-phase methods for approximating the Edgeworth-Pareto hull in nonlinear multicriteria optimization problems is studied. A feature of two-phase methods is that the criteria images of randomly generated points of the decision space approach the Pareto frontier via local optimization of adaptively chosen convolutions of criteria. It is shown that the convergence rate of two-phase methods is determined by the metric properties of the set of local extrema of criteria convolutions, specifically, by its upper metric dimension. The efficiency of two-phase methods is examined; i.e., they are compared with hypothetical optimal methods of the same class. It is shown that the efficiency of two-phase methods is determined by the ratio of the ɛ-entropy and ɛ-capacity for the set of local extrema of criteria convolutions.
doi_str_mv 10.1134/S0965542513040039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671539380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671539380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-acf521c3c263ba34e040eb99f6a3542f6b90921715af628440316ecd8fba611f3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8BL16qSdNkm6Ms6x9YUFg9lzSdtF26TU1Sdb-9WdeDKJ4G5v3e480gdE7JFaUsu14RKTjPUk4ZyQhh8gBNKOc8EUKkh2iyk5OdfoxOvF8TQoXM2QS1qzBWW2wN1rZ_A1dDrwE7FQCrvsJgTKvbuPtCwrtNhkZ5wBsIja08NtZhNQzOfrQbFdq-xqEBvKhqeLcuNMmTchAsbsauO0VHRnUezr7nFL3cLp7n98ny8e5hfrNMNMtkSJQ2PKWa6VSwUrEM4jlQSmmEYrG_EaUkMqUzypURaZ5lhFEBuspNqQSlhk3R5T43tnodwYdi03oNXad6sKMvqIheJllOInrxC13b0fWxXUEZn5EslZxFiu4p7az3DkwxuHit2xaUFLvnF3-eHz3p3uMj29fgfiT_a_oEkguGJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1357042953</pqid></control><display><type>article</type><title>Study of convergence rate and efficiency of two-phase methods for approximating the Edgeworth-Pareto hull</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kamenev, G. K.</creator><creatorcontrib>Kamenev, G. K.</creatorcontrib><description>The convergence rate and efficiency of two-phase methods for approximating the Edgeworth-Pareto hull in nonlinear multicriteria optimization problems is studied. A feature of two-phase methods is that the criteria images of randomly generated points of the decision space approach the Pareto frontier via local optimization of adaptively chosen convolutions of criteria. It is shown that the convergence rate of two-phase methods is determined by the metric properties of the set of local extrema of criteria convolutions, specifically, by its upper metric dimension. The efficiency of two-phase methods is examined; i.e., they are compared with hypothetical optimal methods of the same class. It is shown that the efficiency of two-phase methods is determined by the ratio of the ɛ-entropy and ɛ-capacity for the set of local extrema of criteria convolutions.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542513040039</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Algebra ; Approximation ; Computational efficiency ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Convergence ; Convolution ; Criteria ; Efficiency ; Hulls ; Hulls (structures) ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Methods ; Optimization ; Physics ; Studies ; Theorems</subject><ispartof>Computational mathematics and mathematical physics, 2013-04, Vol.53 (4), p.375-385</ispartof><rights>Pleiades Publishing, Ltd. 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-acf521c3c263ba34e040eb99f6a3542f6b90921715af628440316ecd8fba611f3</citedby><cites>FETCH-LOGICAL-c349t-acf521c3c263ba34e040eb99f6a3542f6b90921715af628440316ecd8fba611f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542513040039$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542513040039$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Kamenev, G. K.</creatorcontrib><title>Study of convergence rate and efficiency of two-phase methods for approximating the Edgeworth-Pareto hull</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>The convergence rate and efficiency of two-phase methods for approximating the Edgeworth-Pareto hull in nonlinear multicriteria optimization problems is studied. A feature of two-phase methods is that the criteria images of randomly generated points of the decision space approach the Pareto frontier via local optimization of adaptively chosen convolutions of criteria. It is shown that the convergence rate of two-phase methods is determined by the metric properties of the set of local extrema of criteria convolutions, specifically, by its upper metric dimension. The efficiency of two-phase methods is examined; i.e., they are compared with hypothetical optimal methods of the same class. It is shown that the efficiency of two-phase methods is determined by the ratio of the ɛ-entropy and ɛ-capacity for the set of local extrema of criteria convolutions.</description><subject>Algebra</subject><subject>Approximation</subject><subject>Computational efficiency</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Convergence</subject><subject>Convolution</subject><subject>Criteria</subject><subject>Efficiency</subject><subject>Hulls</subject><subject>Hulls (structures)</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Optimization</subject><subject>Physics</subject><subject>Studies</subject><subject>Theorems</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8BL16qSdNkm6Ms6x9YUFg9lzSdtF26TU1Sdb-9WdeDKJ4G5v3e480gdE7JFaUsu14RKTjPUk4ZyQhh8gBNKOc8EUKkh2iyk5OdfoxOvF8TQoXM2QS1qzBWW2wN1rZ_A1dDrwE7FQCrvsJgTKvbuPtCwrtNhkZ5wBsIja08NtZhNQzOfrQbFdq-xqEBvKhqeLcuNMmTchAsbsauO0VHRnUezr7nFL3cLp7n98ny8e5hfrNMNMtkSJQ2PKWa6VSwUrEM4jlQSmmEYrG_EaUkMqUzypURaZ5lhFEBuspNqQSlhk3R5T43tnodwYdi03oNXad6sKMvqIheJllOInrxC13b0fWxXUEZn5EslZxFiu4p7az3DkwxuHit2xaUFLvnF3-eHz3p3uMj29fgfiT_a_oEkguGJQ</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Kamenev, G. K.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20130401</creationdate><title>Study of convergence rate and efficiency of two-phase methods for approximating the Edgeworth-Pareto hull</title><author>Kamenev, G. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-acf521c3c263ba34e040eb99f6a3542f6b90921715af628440316ecd8fba611f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algebra</topic><topic>Approximation</topic><topic>Computational efficiency</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Convergence</topic><topic>Convolution</topic><topic>Criteria</topic><topic>Efficiency</topic><topic>Hulls</topic><topic>Hulls (structures)</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Optimization</topic><topic>Physics</topic><topic>Studies</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamenev, G. K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamenev, G. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of convergence rate and efficiency of two-phase methods for approximating the Edgeworth-Pareto hull</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>53</volume><issue>4</issue><spage>375</spage><epage>385</epage><pages>375-385</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>The convergence rate and efficiency of two-phase methods for approximating the Edgeworth-Pareto hull in nonlinear multicriteria optimization problems is studied. A feature of two-phase methods is that the criteria images of randomly generated points of the decision space approach the Pareto frontier via local optimization of adaptively chosen convolutions of criteria. It is shown that the convergence rate of two-phase methods is determined by the metric properties of the set of local extrema of criteria convolutions, specifically, by its upper metric dimension. The efficiency of two-phase methods is examined; i.e., they are compared with hypothetical optimal methods of the same class. It is shown that the efficiency of two-phase methods is determined by the ratio of the ɛ-entropy and ɛ-capacity for the set of local extrema of criteria convolutions.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0965542513040039</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-5425
ispartof Computational mathematics and mathematical physics, 2013-04, Vol.53 (4), p.375-385
issn 0965-5425
1555-6662
language eng
recordid cdi_proquest_miscellaneous_1671539380
source SpringerLink Journals - AutoHoldings
subjects Algebra
Approximation
Computational efficiency
Computational mathematics
Computational Mathematics and Numerical Analysis
Convergence
Convolution
Criteria
Efficiency
Hulls
Hulls (structures)
Mathematical models
Mathematics
Mathematics and Statistics
Methods
Optimization
Physics
Studies
Theorems
title Study of convergence rate and efficiency of two-phase methods for approximating the Edgeworth-Pareto hull
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20convergence%20rate%20and%20efficiency%20of%20two-phase%20methods%20for%20approximating%20the%20Edgeworth-Pareto%20hull&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Kamenev,%20G.%20K.&rft.date=2013-04-01&rft.volume=53&rft.issue=4&rft.spage=375&rft.epage=385&rft.pages=375-385&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542513040039&rft_dat=%3Cproquest_cross%3E1671539380%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1357042953&rft_id=info:pmid/&rfr_iscdi=true