Nanocrystalline Cu0.5Zn0.5Fe2O4: Preparation and Kinetics of Thermal Decomposition of Precursor
Cu 0.5 Zn 0.5 Fe 2 O 4 precursor was synthesized by solid-state reaction at low heat using CuSO 4 ⋅5H 2 O, ZnSO 4 ⋅7H 2 O, FeSO 4 ⋅7H 2 O, and Na 2 CO 3 ⋅10H 2 O as raw materials. The spinel Cu 0.5 Zn 0.5 Fe 2 O 4 was obtained via calcining precursor above 600 ∘ C. The precursor and its calcined pro...
Gespeichert in:
Veröffentlicht in: | Journal of superconductivity and novel magnetism 2013-12, Vol.26 (12), p.3523-3528 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3528 |
---|---|
container_issue | 12 |
container_start_page | 3523 |
container_title | Journal of superconductivity and novel magnetism |
container_volume | 26 |
creator | Wu, Wenwei Cai, Jinchao Wu, Xuehang Wang, Kaituo Hu, Yongmei Wang, Qing |
description | Cu
0.5
Zn
0.5
Fe
2
O
4
precursor was synthesized by solid-state reaction at low heat using CuSO
4
⋅5H
2
O, ZnSO
4
⋅7H
2
O, FeSO
4
⋅7H
2
O, and Na
2
CO
3
⋅10H
2
O as raw materials. The spinel Cu
0.5
Zn
0.5
Fe
2
O
4
was obtained via calcining precursor above 600
∘
C. The precursor and its calcined products were characterized by thermogravimetry and differential thermal analyses (TG/DTA), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), and vibrating sample magnetometer (VSM). The result showed that highly crystallization Cu
0.5
Zn
0.5
Fe
2
O
4
was obtained when the precursor was calcined at 600
∘
C for 2 h. Magnetic characterization indicated that calcined products above 600
∘
C behaved with strong magnetic properties. The kinetics of the thermal decomposition of the precursor was studied using the TG technique. Based on the KAS equation, the values of the activation energy for the thermal decomposition of the precursor were determined. |
doi_str_mv | 10.1007/s10948-013-2227-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671537074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671537074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-1443cda34c30086ecf6ea6845b674f5de3847e6dc8cf593f4f6bd09e18b1a68e3</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxSMEEuXPB2DLgsSSYsd27LChQgFRUYaysFiuc4ZUiV3sZGg_PS6pOrLcnfR-70n3kuQKozFGiN8GjEoqMoRJluc5z7ZHyQgzxjNcUn58uEl5mpyFsEKIMoKKUSLflHXab0Knmqa2kE56NGafNo4p5HN6l757WCuvutrZVNkqfY1UV-uQOpMuvsG3qkkfQLt27UL9R0UhmnTvg_MXyYlRTYDL_T5PPqaPi8lzNps_vUzuZ5nOBe4yTCnRlSJUE4REAdoUoApB2bLg1LAKiKAcikoLbVhJDDXFskIlYLHEkQNyntwMuWvvfnoInWzroKFplAXXB4kLjhnhiNOI4gHV3oXgwci1r1vlNxIjuStTDmXKWKbclSm30XO9j1dBq8Z4ZXUdDsacl1gIxiOXD1yIkv0CL1eu9zZ-_k_4L39HhKo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671537074</pqid></control><display><type>article</type><title>Nanocrystalline Cu0.5Zn0.5Fe2O4: Preparation and Kinetics of Thermal Decomposition of Precursor</title><source>SpringerLink Journals</source><creator>Wu, Wenwei ; Cai, Jinchao ; Wu, Xuehang ; Wang, Kaituo ; Hu, Yongmei ; Wang, Qing</creator><creatorcontrib>Wu, Wenwei ; Cai, Jinchao ; Wu, Xuehang ; Wang, Kaituo ; Hu, Yongmei ; Wang, Qing</creatorcontrib><description>Cu
0.5
Zn
0.5
Fe
2
O
4
precursor was synthesized by solid-state reaction at low heat using CuSO
4
⋅5H
2
O, ZnSO
4
⋅7H
2
O, FeSO
4
⋅7H
2
O, and Na
2
CO
3
⋅10H
2
O as raw materials. The spinel Cu
0.5
Zn
0.5
Fe
2
O
4
was obtained via calcining precursor above 600
∘
C. The precursor and its calcined products were characterized by thermogravimetry and differential thermal analyses (TG/DTA), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), and vibrating sample magnetometer (VSM). The result showed that highly crystallization Cu
0.5
Zn
0.5
Fe
2
O
4
was obtained when the precursor was calcined at 600
∘
C for 2 h. Magnetic characterization indicated that calcined products above 600
∘
C behaved with strong magnetic properties. The kinetics of the thermal decomposition of the precursor was studied using the TG technique. Based on the KAS equation, the values of the activation energy for the thermal decomposition of the precursor were determined.</description><identifier>ISSN: 1557-1939</identifier><identifier>EISSN: 1557-1947</identifier><identifier>DOI: 10.1007/s10948-013-2227-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Condensed Matter Physics ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Differential thermal analysis ; Exact sciences and technology ; Growth from solid phases (including multiphase diffusion and recrystallization) ; Magnetic Materials ; Magnetic properties and materials ; Magnetism ; Materials science ; Materials synthesis; materials processing ; Mathematical analysis ; Methods of crystal growth; physics of crystal growth ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Original Paper ; Physics ; Physics and Astronomy ; Precursors ; Roasting ; Scanning electron microscopy ; Spectrometers ; Strongly Correlated Systems ; Superconductivity ; Thermal decomposition ; X-rays</subject><ispartof>Journal of superconductivity and novel magnetism, 2013-12, Vol.26 (12), p.3523-3528</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-1443cda34c30086ecf6ea6845b674f5de3847e6dc8cf593f4f6bd09e18b1a68e3</citedby><cites>FETCH-LOGICAL-c281t-1443cda34c30086ecf6ea6845b674f5de3847e6dc8cf593f4f6bd09e18b1a68e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10948-013-2227-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10948-013-2227-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27918857$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Wenwei</creatorcontrib><creatorcontrib>Cai, Jinchao</creatorcontrib><creatorcontrib>Wu, Xuehang</creatorcontrib><creatorcontrib>Wang, Kaituo</creatorcontrib><creatorcontrib>Hu, Yongmei</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><title>Nanocrystalline Cu0.5Zn0.5Fe2O4: Preparation and Kinetics of Thermal Decomposition of Precursor</title><title>Journal of superconductivity and novel magnetism</title><addtitle>J Supercond Nov Magn</addtitle><description>Cu
0.5
Zn
0.5
Fe
2
O
4
precursor was synthesized by solid-state reaction at low heat using CuSO
4
⋅5H
2
O, ZnSO
4
⋅7H
2
O, FeSO
4
⋅7H
2
O, and Na
2
CO
3
⋅10H
2
O as raw materials. The spinel Cu
0.5
Zn
0.5
Fe
2
O
4
was obtained via calcining precursor above 600
∘
C. The precursor and its calcined products were characterized by thermogravimetry and differential thermal analyses (TG/DTA), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), and vibrating sample magnetometer (VSM). The result showed that highly crystallization Cu
0.5
Zn
0.5
Fe
2
O
4
was obtained when the precursor was calcined at 600
∘
C for 2 h. Magnetic characterization indicated that calcined products above 600
∘
C behaved with strong magnetic properties. The kinetics of the thermal decomposition of the precursor was studied using the TG technique. Based on the KAS equation, the values of the activation energy for the thermal decomposition of the precursor were determined.</description><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Differential thermal analysis</subject><subject>Exact sciences and technology</subject><subject>Growth from solid phases (including multiphase diffusion and recrystallization)</subject><subject>Magnetic Materials</subject><subject>Magnetic properties and materials</subject><subject>Magnetism</subject><subject>Materials science</subject><subject>Materials synthesis; materials processing</subject><subject>Mathematical analysis</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Precursors</subject><subject>Roasting</subject><subject>Scanning electron microscopy</subject><subject>Spectrometers</subject><subject>Strongly Correlated Systems</subject><subject>Superconductivity</subject><subject>Thermal decomposition</subject><subject>X-rays</subject><issn>1557-1939</issn><issn>1557-1947</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxSMEEuXPB2DLgsSSYsd27LChQgFRUYaysFiuc4ZUiV3sZGg_PS6pOrLcnfR-70n3kuQKozFGiN8GjEoqMoRJluc5z7ZHyQgzxjNcUn58uEl5mpyFsEKIMoKKUSLflHXab0Knmqa2kE56NGafNo4p5HN6l757WCuvutrZVNkqfY1UV-uQOpMuvsG3qkkfQLt27UL9R0UhmnTvg_MXyYlRTYDL_T5PPqaPi8lzNps_vUzuZ5nOBe4yTCnRlSJUE4REAdoUoApB2bLg1LAKiKAcikoLbVhJDDXFskIlYLHEkQNyntwMuWvvfnoInWzroKFplAXXB4kLjhnhiNOI4gHV3oXgwci1r1vlNxIjuStTDmXKWKbclSm30XO9j1dBq8Z4ZXUdDsacl1gIxiOXD1yIkv0CL1eu9zZ-_k_4L39HhKo</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Wu, Wenwei</creator><creator>Cai, Jinchao</creator><creator>Wu, Xuehang</creator><creator>Wang, Kaituo</creator><creator>Hu, Yongmei</creator><creator>Wang, Qing</creator><general>Springer US</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20131201</creationdate><title>Nanocrystalline Cu0.5Zn0.5Fe2O4: Preparation and Kinetics of Thermal Decomposition of Precursor</title><author>Wu, Wenwei ; Cai, Jinchao ; Wu, Xuehang ; Wang, Kaituo ; Hu, Yongmei ; Wang, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-1443cda34c30086ecf6ea6845b674f5de3847e6dc8cf593f4f6bd09e18b1a68e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Differential thermal analysis</topic><topic>Exact sciences and technology</topic><topic>Growth from solid phases (including multiphase diffusion and recrystallization)</topic><topic>Magnetic Materials</topic><topic>Magnetic properties and materials</topic><topic>Magnetism</topic><topic>Materials science</topic><topic>Materials synthesis; materials processing</topic><topic>Mathematical analysis</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Precursors</topic><topic>Roasting</topic><topic>Scanning electron microscopy</topic><topic>Spectrometers</topic><topic>Strongly Correlated Systems</topic><topic>Superconductivity</topic><topic>Thermal decomposition</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Wenwei</creatorcontrib><creatorcontrib>Cai, Jinchao</creatorcontrib><creatorcontrib>Wu, Xuehang</creatorcontrib><creatorcontrib>Wang, Kaituo</creatorcontrib><creatorcontrib>Hu, Yongmei</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of superconductivity and novel magnetism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Wenwei</au><au>Cai, Jinchao</au><au>Wu, Xuehang</au><au>Wang, Kaituo</au><au>Hu, Yongmei</au><au>Wang, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanocrystalline Cu0.5Zn0.5Fe2O4: Preparation and Kinetics of Thermal Decomposition of Precursor</atitle><jtitle>Journal of superconductivity and novel magnetism</jtitle><stitle>J Supercond Nov Magn</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>26</volume><issue>12</issue><spage>3523</spage><epage>3528</epage><pages>3523-3528</pages><issn>1557-1939</issn><eissn>1557-1947</eissn><abstract>Cu
0.5
Zn
0.5
Fe
2
O
4
precursor was synthesized by solid-state reaction at low heat using CuSO
4
⋅5H
2
O, ZnSO
4
⋅7H
2
O, FeSO
4
⋅7H
2
O, and Na
2
CO
3
⋅10H
2
O as raw materials. The spinel Cu
0.5
Zn
0.5
Fe
2
O
4
was obtained via calcining precursor above 600
∘
C. The precursor and its calcined products were characterized by thermogravimetry and differential thermal analyses (TG/DTA), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), and vibrating sample magnetometer (VSM). The result showed that highly crystallization Cu
0.5
Zn
0.5
Fe
2
O
4
was obtained when the precursor was calcined at 600
∘
C for 2 h. Magnetic characterization indicated that calcined products above 600
∘
C behaved with strong magnetic properties. The kinetics of the thermal decomposition of the precursor was studied using the TG technique. Based on the KAS equation, the values of the activation energy for the thermal decomposition of the precursor were determined.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10948-013-2227-z</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1557-1939 |
ispartof | Journal of superconductivity and novel magnetism, 2013-12, Vol.26 (12), p.3523-3528 |
issn | 1557-1939 1557-1947 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671537074 |
source | SpringerLink Journals |
subjects | Characterization and Evaluation of Materials Condensed Matter Physics Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science rheology Differential thermal analysis Exact sciences and technology Growth from solid phases (including multiphase diffusion and recrystallization) Magnetic Materials Magnetic properties and materials Magnetism Materials science Materials synthesis materials processing Mathematical analysis Methods of crystal growth physics of crystal growth Nanocrystalline materials Nanoscale materials and structures: fabrication and characterization Original Paper Physics Physics and Astronomy Precursors Roasting Scanning electron microscopy Spectrometers Strongly Correlated Systems Superconductivity Thermal decomposition X-rays |
title | Nanocrystalline Cu0.5Zn0.5Fe2O4: Preparation and Kinetics of Thermal Decomposition of Precursor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A44%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanocrystalline%20Cu0.5Zn0.5Fe2O4:%20Preparation%20and%20Kinetics%20of%20Thermal%20Decomposition%20of%20Precursor&rft.jtitle=Journal%20of%20superconductivity%20and%20novel%20magnetism&rft.au=Wu,%20Wenwei&rft.date=2013-12-01&rft.volume=26&rft.issue=12&rft.spage=3523&rft.epage=3528&rft.pages=3523-3528&rft.issn=1557-1939&rft.eissn=1557-1947&rft_id=info:doi/10.1007/s10948-013-2227-z&rft_dat=%3Cproquest_cross%3E1671537074%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671537074&rft_id=info:pmid/&rfr_iscdi=true |