Nanocrystalline Cu0.5Zn0.5Fe2O4: Preparation and Kinetics of Thermal Decomposition of Precursor

Cu 0.5 Zn 0.5 Fe 2 O 4 precursor was synthesized by solid-state reaction at low heat using CuSO 4 ⋅5H 2 O, ZnSO 4 ⋅7H 2 O, FeSO 4 ⋅7H 2 O, and Na 2 CO 3 ⋅10H 2 O as raw materials. The spinel Cu 0.5 Zn 0.5 Fe 2 O 4 was obtained via calcining precursor above 600 ∘ C. The precursor and its calcined pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of superconductivity and novel magnetism 2013-12, Vol.26 (12), p.3523-3528
Hauptverfasser: Wu, Wenwei, Cai, Jinchao, Wu, Xuehang, Wang, Kaituo, Hu, Yongmei, Wang, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3528
container_issue 12
container_start_page 3523
container_title Journal of superconductivity and novel magnetism
container_volume 26
creator Wu, Wenwei
Cai, Jinchao
Wu, Xuehang
Wang, Kaituo
Hu, Yongmei
Wang, Qing
description Cu 0.5 Zn 0.5 Fe 2 O 4 precursor was synthesized by solid-state reaction at low heat using CuSO 4 ⋅5H 2 O, ZnSO 4 ⋅7H 2 O, FeSO 4 ⋅7H 2 O, and Na 2 CO 3 ⋅10H 2 O as raw materials. The spinel Cu 0.5 Zn 0.5 Fe 2 O 4 was obtained via calcining precursor above 600 ∘ C. The precursor and its calcined products were characterized by thermogravimetry and differential thermal analyses (TG/DTA), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), and vibrating sample magnetometer (VSM). The result showed that highly crystallization Cu 0.5 Zn 0.5 Fe 2 O 4 was obtained when the precursor was calcined at 600 ∘ C for 2 h. Magnetic characterization indicated that calcined products above 600 ∘ C behaved with strong magnetic properties. The kinetics of the thermal decomposition of the precursor was studied using the TG technique. Based on the KAS equation, the values of the activation energy for the thermal decomposition of the precursor were determined.
doi_str_mv 10.1007/s10948-013-2227-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671537074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671537074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-1443cda34c30086ecf6ea6845b674f5de3847e6dc8cf593f4f6bd09e18b1a68e3</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxSMEEuXPB2DLgsSSYsd27LChQgFRUYaysFiuc4ZUiV3sZGg_PS6pOrLcnfR-70n3kuQKozFGiN8GjEoqMoRJluc5z7ZHyQgzxjNcUn58uEl5mpyFsEKIMoKKUSLflHXab0Knmqa2kE56NGafNo4p5HN6l757WCuvutrZVNkqfY1UV-uQOpMuvsG3qkkfQLt27UL9R0UhmnTvg_MXyYlRTYDL_T5PPqaPi8lzNps_vUzuZ5nOBe4yTCnRlSJUE4REAdoUoApB2bLg1LAKiKAcikoLbVhJDDXFskIlYLHEkQNyntwMuWvvfnoInWzroKFplAXXB4kLjhnhiNOI4gHV3oXgwci1r1vlNxIjuStTDmXKWKbclSm30XO9j1dBq8Z4ZXUdDsacl1gIxiOXD1yIkv0CL1eu9zZ-_k_4L39HhKo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671537074</pqid></control><display><type>article</type><title>Nanocrystalline Cu0.5Zn0.5Fe2O4: Preparation and Kinetics of Thermal Decomposition of Precursor</title><source>SpringerLink Journals</source><creator>Wu, Wenwei ; Cai, Jinchao ; Wu, Xuehang ; Wang, Kaituo ; Hu, Yongmei ; Wang, Qing</creator><creatorcontrib>Wu, Wenwei ; Cai, Jinchao ; Wu, Xuehang ; Wang, Kaituo ; Hu, Yongmei ; Wang, Qing</creatorcontrib><description>Cu 0.5 Zn 0.5 Fe 2 O 4 precursor was synthesized by solid-state reaction at low heat using CuSO 4 ⋅5H 2 O, ZnSO 4 ⋅7H 2 O, FeSO 4 ⋅7H 2 O, and Na 2 CO 3 ⋅10H 2 O as raw materials. The spinel Cu 0.5 Zn 0.5 Fe 2 O 4 was obtained via calcining precursor above 600 ∘ C. The precursor and its calcined products were characterized by thermogravimetry and differential thermal analyses (TG/DTA), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), and vibrating sample magnetometer (VSM). The result showed that highly crystallization Cu 0.5 Zn 0.5 Fe 2 O 4 was obtained when the precursor was calcined at 600 ∘ C for 2 h. Magnetic characterization indicated that calcined products above 600 ∘ C behaved with strong magnetic properties. The kinetics of the thermal decomposition of the precursor was studied using the TG technique. Based on the KAS equation, the values of the activation energy for the thermal decomposition of the precursor were determined.</description><identifier>ISSN: 1557-1939</identifier><identifier>EISSN: 1557-1947</identifier><identifier>DOI: 10.1007/s10948-013-2227-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Condensed Matter Physics ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Differential thermal analysis ; Exact sciences and technology ; Growth from solid phases (including multiphase diffusion and recrystallization) ; Magnetic Materials ; Magnetic properties and materials ; Magnetism ; Materials science ; Materials synthesis; materials processing ; Mathematical analysis ; Methods of crystal growth; physics of crystal growth ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Original Paper ; Physics ; Physics and Astronomy ; Precursors ; Roasting ; Scanning electron microscopy ; Spectrometers ; Strongly Correlated Systems ; Superconductivity ; Thermal decomposition ; X-rays</subject><ispartof>Journal of superconductivity and novel magnetism, 2013-12, Vol.26 (12), p.3523-3528</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-1443cda34c30086ecf6ea6845b674f5de3847e6dc8cf593f4f6bd09e18b1a68e3</citedby><cites>FETCH-LOGICAL-c281t-1443cda34c30086ecf6ea6845b674f5de3847e6dc8cf593f4f6bd09e18b1a68e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10948-013-2227-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10948-013-2227-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27918857$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Wenwei</creatorcontrib><creatorcontrib>Cai, Jinchao</creatorcontrib><creatorcontrib>Wu, Xuehang</creatorcontrib><creatorcontrib>Wang, Kaituo</creatorcontrib><creatorcontrib>Hu, Yongmei</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><title>Nanocrystalline Cu0.5Zn0.5Fe2O4: Preparation and Kinetics of Thermal Decomposition of Precursor</title><title>Journal of superconductivity and novel magnetism</title><addtitle>J Supercond Nov Magn</addtitle><description>Cu 0.5 Zn 0.5 Fe 2 O 4 precursor was synthesized by solid-state reaction at low heat using CuSO 4 ⋅5H 2 O, ZnSO 4 ⋅7H 2 O, FeSO 4 ⋅7H 2 O, and Na 2 CO 3 ⋅10H 2 O as raw materials. The spinel Cu 0.5 Zn 0.5 Fe 2 O 4 was obtained via calcining precursor above 600 ∘ C. The precursor and its calcined products were characterized by thermogravimetry and differential thermal analyses (TG/DTA), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), and vibrating sample magnetometer (VSM). The result showed that highly crystallization Cu 0.5 Zn 0.5 Fe 2 O 4 was obtained when the precursor was calcined at 600 ∘ C for 2 h. Magnetic characterization indicated that calcined products above 600 ∘ C behaved with strong magnetic properties. The kinetics of the thermal decomposition of the precursor was studied using the TG technique. Based on the KAS equation, the values of the activation energy for the thermal decomposition of the precursor were determined.</description><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Differential thermal analysis</subject><subject>Exact sciences and technology</subject><subject>Growth from solid phases (including multiphase diffusion and recrystallization)</subject><subject>Magnetic Materials</subject><subject>Magnetic properties and materials</subject><subject>Magnetism</subject><subject>Materials science</subject><subject>Materials synthesis; materials processing</subject><subject>Mathematical analysis</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Precursors</subject><subject>Roasting</subject><subject>Scanning electron microscopy</subject><subject>Spectrometers</subject><subject>Strongly Correlated Systems</subject><subject>Superconductivity</subject><subject>Thermal decomposition</subject><subject>X-rays</subject><issn>1557-1939</issn><issn>1557-1947</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxSMEEuXPB2DLgsSSYsd27LChQgFRUYaysFiuc4ZUiV3sZGg_PS6pOrLcnfR-70n3kuQKozFGiN8GjEoqMoRJluc5z7ZHyQgzxjNcUn58uEl5mpyFsEKIMoKKUSLflHXab0Knmqa2kE56NGafNo4p5HN6l757WCuvutrZVNkqfY1UV-uQOpMuvsG3qkkfQLt27UL9R0UhmnTvg_MXyYlRTYDL_T5PPqaPi8lzNps_vUzuZ5nOBe4yTCnRlSJUE4REAdoUoApB2bLg1LAKiKAcikoLbVhJDDXFskIlYLHEkQNyntwMuWvvfnoInWzroKFplAXXB4kLjhnhiNOI4gHV3oXgwci1r1vlNxIjuStTDmXKWKbclSm30XO9j1dBq8Z4ZXUdDsacl1gIxiOXD1yIkv0CL1eu9zZ-_k_4L39HhKo</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Wu, Wenwei</creator><creator>Cai, Jinchao</creator><creator>Wu, Xuehang</creator><creator>Wang, Kaituo</creator><creator>Hu, Yongmei</creator><creator>Wang, Qing</creator><general>Springer US</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20131201</creationdate><title>Nanocrystalline Cu0.5Zn0.5Fe2O4: Preparation and Kinetics of Thermal Decomposition of Precursor</title><author>Wu, Wenwei ; Cai, Jinchao ; Wu, Xuehang ; Wang, Kaituo ; Hu, Yongmei ; Wang, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-1443cda34c30086ecf6ea6845b674f5de3847e6dc8cf593f4f6bd09e18b1a68e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Differential thermal analysis</topic><topic>Exact sciences and technology</topic><topic>Growth from solid phases (including multiphase diffusion and recrystallization)</topic><topic>Magnetic Materials</topic><topic>Magnetic properties and materials</topic><topic>Magnetism</topic><topic>Materials science</topic><topic>Materials synthesis; materials processing</topic><topic>Mathematical analysis</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Precursors</topic><topic>Roasting</topic><topic>Scanning electron microscopy</topic><topic>Spectrometers</topic><topic>Strongly Correlated Systems</topic><topic>Superconductivity</topic><topic>Thermal decomposition</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Wenwei</creatorcontrib><creatorcontrib>Cai, Jinchao</creatorcontrib><creatorcontrib>Wu, Xuehang</creatorcontrib><creatorcontrib>Wang, Kaituo</creatorcontrib><creatorcontrib>Hu, Yongmei</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of superconductivity and novel magnetism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Wenwei</au><au>Cai, Jinchao</au><au>Wu, Xuehang</au><au>Wang, Kaituo</au><au>Hu, Yongmei</au><au>Wang, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanocrystalline Cu0.5Zn0.5Fe2O4: Preparation and Kinetics of Thermal Decomposition of Precursor</atitle><jtitle>Journal of superconductivity and novel magnetism</jtitle><stitle>J Supercond Nov Magn</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>26</volume><issue>12</issue><spage>3523</spage><epage>3528</epage><pages>3523-3528</pages><issn>1557-1939</issn><eissn>1557-1947</eissn><abstract>Cu 0.5 Zn 0.5 Fe 2 O 4 precursor was synthesized by solid-state reaction at low heat using CuSO 4 ⋅5H 2 O, ZnSO 4 ⋅7H 2 O, FeSO 4 ⋅7H 2 O, and Na 2 CO 3 ⋅10H 2 O as raw materials. The spinel Cu 0.5 Zn 0.5 Fe 2 O 4 was obtained via calcining precursor above 600 ∘ C. The precursor and its calcined products were characterized by thermogravimetry and differential thermal analyses (TG/DTA), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), and vibrating sample magnetometer (VSM). The result showed that highly crystallization Cu 0.5 Zn 0.5 Fe 2 O 4 was obtained when the precursor was calcined at 600 ∘ C for 2 h. Magnetic characterization indicated that calcined products above 600 ∘ C behaved with strong magnetic properties. The kinetics of the thermal decomposition of the precursor was studied using the TG technique. Based on the KAS equation, the values of the activation energy for the thermal decomposition of the precursor were determined.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10948-013-2227-z</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1557-1939
ispartof Journal of superconductivity and novel magnetism, 2013-12, Vol.26 (12), p.3523-3528
issn 1557-1939
1557-1947
language eng
recordid cdi_proquest_miscellaneous_1671537074
source SpringerLink Journals
subjects Characterization and Evaluation of Materials
Condensed Matter Physics
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
Differential thermal analysis
Exact sciences and technology
Growth from solid phases (including multiphase diffusion and recrystallization)
Magnetic Materials
Magnetic properties and materials
Magnetism
Materials science
Materials synthesis
materials processing
Mathematical analysis
Methods of crystal growth
physics of crystal growth
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Original Paper
Physics
Physics and Astronomy
Precursors
Roasting
Scanning electron microscopy
Spectrometers
Strongly Correlated Systems
Superconductivity
Thermal decomposition
X-rays
title Nanocrystalline Cu0.5Zn0.5Fe2O4: Preparation and Kinetics of Thermal Decomposition of Precursor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A44%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanocrystalline%20Cu0.5Zn0.5Fe2O4:%20Preparation%20and%20Kinetics%20of%20Thermal%20Decomposition%20of%20Precursor&rft.jtitle=Journal%20of%20superconductivity%20and%20novel%20magnetism&rft.au=Wu,%20Wenwei&rft.date=2013-12-01&rft.volume=26&rft.issue=12&rft.spage=3523&rft.epage=3528&rft.pages=3523-3528&rft.issn=1557-1939&rft.eissn=1557-1947&rft_id=info:doi/10.1007/s10948-013-2227-z&rft_dat=%3Cproquest_cross%3E1671537074%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671537074&rft_id=info:pmid/&rfr_iscdi=true