Global smoothing for the periodic Benjamin equation in low-regularity spaces
This paper is intended as an attempt to set up the global smoothing for the periodic Benjamin equation. It is shown that for Hs(T) initial data with 8 〉 -1/2 and for any s 〈 s1〈 min{s + 1,3s + 1}, the difference of the evolution with the linear evolution is in Hs1 (T) for all times, with at most pol...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2013-10, Vol.56 (10), p.2051-2061 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2061 |
---|---|
container_issue | 10 |
container_start_page | 2051 |
container_title | Science China. Mathematics |
container_volume | 56 |
creator | Shi, ShaoGuang Li, JunFeng |
description | This paper is intended as an attempt to set up the global smoothing for the periodic Benjamin equation. It is shown that for Hs(T) initial data with 8 〉 -1/2 and for any s 〈 s1〈 min{s + 1,3s + 1}, the difference of the evolution with the linear evolution is in Hs1 (T) for all times, with at most polynomial growing HS1 norm. Unlike Korteweg-de Vries (KdV) equation, there are less symmetries of the Benjamin system, especially for the resonant function. The new ingredient is that we need to deal with some new difficulties that are caused by the lack of symmetries. |
doi_str_mv | 10.1007/s11425-013-4672-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671536547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>47184015</cqvip_id><sourcerecordid>1677978080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-5d0ccab29c20b2558ab93b88a74d858542e8d666985ecf0f24017ca58d7c30f83</originalsourceid><addsrcrecordid>eNqNUT1PwzAQjRBIVNAfwGY2FoM_Y2eECgpSJRaYLcdxUldJnNqJUP89rlIxAjfc3fDePd17WXaD0T1GSDxEjBnhEGEKWS4IpGfZAsu8gKmR87TngkFBJL3MljHuUCpaICboItusW1_qFsTO-3Hr-gbUPoBxa8Fgg_OVM-DJ9jvduR7Y_aRH53uQ9tZ_wWCbqdXBjQcQB21svM4uat1GuzzNq-zz5flj9Qo37-u31eMGGobpCHmFjNElKQxBJeFc6rKgpZRasEpyyRmxssrzvJDcmhrVhCEsjOayEoaiWtKr7G6-OwS_n2wcVeeisW2re-unqNK_ohASSfQfKOY058mMv6EkmS0JPV7FM9QEH2OwtRqC63Q4KIzUMRI1R6JSJOoYiaKJQ2ZOTNi-sUHt_BT65NOvpNuT0Nb3zT7xfpSYwDIZw-k32DSYKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1620078230</pqid></control><display><type>article</type><title>Global smoothing for the periodic Benjamin equation in low-regularity spaces</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Shi, ShaoGuang ; Li, JunFeng</creator><creatorcontrib>Shi, ShaoGuang ; Li, JunFeng</creatorcontrib><description>This paper is intended as an attempt to set up the global smoothing for the periodic Benjamin equation. It is shown that for Hs(T) initial data with 8 〉 -1/2 and for any s 〈 s1〈 min{s + 1,3s + 1}, the difference of the evolution with the linear evolution is in Hs1 (T) for all times, with at most polynomial growing HS1 norm. Unlike Korteweg-de Vries (KdV) equation, there are less symmetries of the Benjamin system, especially for the resonant function. The new ingredient is that we need to deal with some new difficulties that are caused by the lack of symmetries.</description><identifier>ISSN: 1674-7283</identifier><identifier>ISSN: 1006-9283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-013-4672-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Astronomy ; Benjamin方程 ; China ; Evolution ; Functions (mathematics) ; KdV ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Norms ; Polynomials ; Smoothing ; Symmetry ; 函数 ; 周期性 ; 多项式 ; 对称性 ; 德弗里斯 ; 空间平滑</subject><ispartof>Science China. Mathematics, 2013-10, Vol.56 (10), p.2051-2061</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-5d0ccab29c20b2558ab93b88a74d858542e8d666985ecf0f24017ca58d7c30f83</citedby><cites>FETCH-LOGICAL-c413t-5d0ccab29c20b2558ab93b88a74d858542e8d666985ecf0f24017ca58d7c30f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60114X/60114X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-013-4672-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-013-4672-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Shi, ShaoGuang</creatorcontrib><creatorcontrib>Li, JunFeng</creatorcontrib><title>Global smoothing for the periodic Benjamin equation in low-regularity spaces</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><addtitle>SCIENCE CHINA Mathematics</addtitle><description>This paper is intended as an attempt to set up the global smoothing for the periodic Benjamin equation. It is shown that for Hs(T) initial data with 8 〉 -1/2 and for any s 〈 s1〈 min{s + 1,3s + 1}, the difference of the evolution with the linear evolution is in Hs1 (T) for all times, with at most polynomial growing HS1 norm. Unlike Korteweg-de Vries (KdV) equation, there are less symmetries of the Benjamin system, especially for the resonant function. The new ingredient is that we need to deal with some new difficulties that are caused by the lack of symmetries.</description><subject>Applications of Mathematics</subject><subject>Astronomy</subject><subject>Benjamin方程</subject><subject>China</subject><subject>Evolution</subject><subject>Functions (mathematics)</subject><subject>KdV</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Norms</subject><subject>Polynomials</subject><subject>Smoothing</subject><subject>Symmetry</subject><subject>函数</subject><subject>周期性</subject><subject>多项式</subject><subject>对称性</subject><subject>德弗里斯</subject><subject>空间平滑</subject><issn>1674-7283</issn><issn>1006-9283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNUT1PwzAQjRBIVNAfwGY2FoM_Y2eECgpSJRaYLcdxUldJnNqJUP89rlIxAjfc3fDePd17WXaD0T1GSDxEjBnhEGEKWS4IpGfZAsu8gKmR87TngkFBJL3MljHuUCpaICboItusW1_qFsTO-3Hr-gbUPoBxa8Fgg_OVM-DJ9jvduR7Y_aRH53uQ9tZ_wWCbqdXBjQcQB21svM4uat1GuzzNq-zz5flj9Qo37-u31eMGGobpCHmFjNElKQxBJeFc6rKgpZRasEpyyRmxssrzvJDcmhrVhCEsjOayEoaiWtKr7G6-OwS_n2wcVeeisW2re-unqNK_ohASSfQfKOY058mMv6EkmS0JPV7FM9QEH2OwtRqC63Q4KIzUMRI1R6JSJOoYiaKJQ2ZOTNi-sUHt_BT65NOvpNuT0Nb3zT7xfpSYwDIZw-k32DSYKQ</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Shi, ShaoGuang</creator><creator>Li, JunFeng</creator><general>Springer Berlin Heidelberg</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20131001</creationdate><title>Global smoothing for the periodic Benjamin equation in low-regularity spaces</title><author>Shi, ShaoGuang ; Li, JunFeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-5d0ccab29c20b2558ab93b88a74d858542e8d666985ecf0f24017ca58d7c30f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applications of Mathematics</topic><topic>Astronomy</topic><topic>Benjamin方程</topic><topic>China</topic><topic>Evolution</topic><topic>Functions (mathematics)</topic><topic>KdV</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Norms</topic><topic>Polynomials</topic><topic>Smoothing</topic><topic>Symmetry</topic><topic>函数</topic><topic>周期性</topic><topic>多项式</topic><topic>对称性</topic><topic>德弗里斯</topic><topic>空间平滑</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, ShaoGuang</creatorcontrib><creatorcontrib>Li, JunFeng</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, ShaoGuang</au><au>Li, JunFeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global smoothing for the periodic Benjamin equation in low-regularity spaces</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><addtitle>SCIENCE CHINA Mathematics</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>56</volume><issue>10</issue><spage>2051</spage><epage>2061</epage><pages>2051-2061</pages><issn>1674-7283</issn><issn>1006-9283</issn><eissn>1869-1862</eissn><abstract>This paper is intended as an attempt to set up the global smoothing for the periodic Benjamin equation. It is shown that for Hs(T) initial data with 8 〉 -1/2 and for any s 〈 s1〈 min{s + 1,3s + 1}, the difference of the evolution with the linear evolution is in Hs1 (T) for all times, with at most polynomial growing HS1 norm. Unlike Korteweg-de Vries (KdV) equation, there are less symmetries of the Benjamin system, especially for the resonant function. The new ingredient is that we need to deal with some new difficulties that are caused by the lack of symmetries.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11425-013-4672-3</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7283 |
ispartof | Science China. Mathematics, 2013-10, Vol.56 (10), p.2051-2061 |
issn | 1674-7283 1006-9283 1869-1862 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671536547 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Applications of Mathematics Astronomy Benjamin方程 China Evolution Functions (mathematics) KdV Mathematical analysis Mathematics Mathematics and Statistics Norms Polynomials Smoothing Symmetry 函数 周期性 多项式 对称性 德弗里斯 空间平滑 |
title | Global smoothing for the periodic Benjamin equation in low-regularity spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A26%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20smoothing%20for%20the%20periodic%20Benjamin%20equation%20in%20low-regularity%20spaces&rft.jtitle=Science%20China.%20Mathematics&rft.au=Shi,%20ShaoGuang&rft.date=2013-10-01&rft.volume=56&rft.issue=10&rft.spage=2051&rft.epage=2061&rft.pages=2051-2061&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-013-4672-3&rft_dat=%3Cproquest_cross%3E1677978080%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1620078230&rft_id=info:pmid/&rft_cqvip_id=47184015&rfr_iscdi=true |