Global smoothing for the periodic Benjamin equation in low-regularity spaces

This paper is intended as an attempt to set up the global smoothing for the periodic Benjamin equation. It is shown that for Hs(T) initial data with 8 〉 -1/2 and for any s 〈 s1〈 min{s + 1,3s + 1}, the difference of the evolution with the linear evolution is in Hs1 (T) for all times, with at most pol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2013-10, Vol.56 (10), p.2051-2061
Hauptverfasser: Shi, ShaoGuang, Li, JunFeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2061
container_issue 10
container_start_page 2051
container_title Science China. Mathematics
container_volume 56
creator Shi, ShaoGuang
Li, JunFeng
description This paper is intended as an attempt to set up the global smoothing for the periodic Benjamin equation. It is shown that for Hs(T) initial data with 8 〉 -1/2 and for any s 〈 s1〈 min{s + 1,3s + 1}, the difference of the evolution with the linear evolution is in Hs1 (T) for all times, with at most polynomial growing HS1 norm. Unlike Korteweg-de Vries (KdV) equation, there are less symmetries of the Benjamin system, especially for the resonant function. The new ingredient is that we need to deal with some new difficulties that are caused by the lack of symmetries.
doi_str_mv 10.1007/s11425-013-4672-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671536547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>47184015</cqvip_id><sourcerecordid>1677978080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-5d0ccab29c20b2558ab93b88a74d858542e8d666985ecf0f24017ca58d7c30f83</originalsourceid><addsrcrecordid>eNqNUT1PwzAQjRBIVNAfwGY2FoM_Y2eECgpSJRaYLcdxUldJnNqJUP89rlIxAjfc3fDePd17WXaD0T1GSDxEjBnhEGEKWS4IpGfZAsu8gKmR87TngkFBJL3MljHuUCpaICboItusW1_qFsTO-3Hr-gbUPoBxa8Fgg_OVM-DJ9jvduR7Y_aRH53uQ9tZ_wWCbqdXBjQcQB21svM4uat1GuzzNq-zz5flj9Qo37-u31eMGGobpCHmFjNElKQxBJeFc6rKgpZRasEpyyRmxssrzvJDcmhrVhCEsjOayEoaiWtKr7G6-OwS_n2wcVeeisW2re-unqNK_ohASSfQfKOY058mMv6EkmS0JPV7FM9QEH2OwtRqC63Q4KIzUMRI1R6JSJOoYiaKJQ2ZOTNi-sUHt_BT65NOvpNuT0Nb3zT7xfpSYwDIZw-k32DSYKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1620078230</pqid></control><display><type>article</type><title>Global smoothing for the periodic Benjamin equation in low-regularity spaces</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Shi, ShaoGuang ; Li, JunFeng</creator><creatorcontrib>Shi, ShaoGuang ; Li, JunFeng</creatorcontrib><description>This paper is intended as an attempt to set up the global smoothing for the periodic Benjamin equation. It is shown that for Hs(T) initial data with 8 〉 -1/2 and for any s 〈 s1〈 min{s + 1,3s + 1}, the difference of the evolution with the linear evolution is in Hs1 (T) for all times, with at most polynomial growing HS1 norm. Unlike Korteweg-de Vries (KdV) equation, there are less symmetries of the Benjamin system, especially for the resonant function. The new ingredient is that we need to deal with some new difficulties that are caused by the lack of symmetries.</description><identifier>ISSN: 1674-7283</identifier><identifier>ISSN: 1006-9283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-013-4672-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Astronomy ; Benjamin方程 ; China ; Evolution ; Functions (mathematics) ; KdV ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Norms ; Polynomials ; Smoothing ; Symmetry ; 函数 ; 周期性 ; 多项式 ; 对称性 ; 德弗里斯 ; 空间平滑</subject><ispartof>Science China. Mathematics, 2013-10, Vol.56 (10), p.2051-2061</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-5d0ccab29c20b2558ab93b88a74d858542e8d666985ecf0f24017ca58d7c30f83</citedby><cites>FETCH-LOGICAL-c413t-5d0ccab29c20b2558ab93b88a74d858542e8d666985ecf0f24017ca58d7c30f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60114X/60114X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-013-4672-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-013-4672-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Shi, ShaoGuang</creatorcontrib><creatorcontrib>Li, JunFeng</creatorcontrib><title>Global smoothing for the periodic Benjamin equation in low-regularity spaces</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><addtitle>SCIENCE CHINA Mathematics</addtitle><description>This paper is intended as an attempt to set up the global smoothing for the periodic Benjamin equation. It is shown that for Hs(T) initial data with 8 〉 -1/2 and for any s 〈 s1〈 min{s + 1,3s + 1}, the difference of the evolution with the linear evolution is in Hs1 (T) for all times, with at most polynomial growing HS1 norm. Unlike Korteweg-de Vries (KdV) equation, there are less symmetries of the Benjamin system, especially for the resonant function. The new ingredient is that we need to deal with some new difficulties that are caused by the lack of symmetries.</description><subject>Applications of Mathematics</subject><subject>Astronomy</subject><subject>Benjamin方程</subject><subject>China</subject><subject>Evolution</subject><subject>Functions (mathematics)</subject><subject>KdV</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Norms</subject><subject>Polynomials</subject><subject>Smoothing</subject><subject>Symmetry</subject><subject>函数</subject><subject>周期性</subject><subject>多项式</subject><subject>对称性</subject><subject>德弗里斯</subject><subject>空间平滑</subject><issn>1674-7283</issn><issn>1006-9283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNUT1PwzAQjRBIVNAfwGY2FoM_Y2eECgpSJRaYLcdxUldJnNqJUP89rlIxAjfc3fDePd17WXaD0T1GSDxEjBnhEGEKWS4IpGfZAsu8gKmR87TngkFBJL3MljHuUCpaICboItusW1_qFsTO-3Hr-gbUPoBxa8Fgg_OVM-DJ9jvduR7Y_aRH53uQ9tZ_wWCbqdXBjQcQB21svM4uat1GuzzNq-zz5flj9Qo37-u31eMGGobpCHmFjNElKQxBJeFc6rKgpZRasEpyyRmxssrzvJDcmhrVhCEsjOayEoaiWtKr7G6-OwS_n2wcVeeisW2re-unqNK_ohASSfQfKOY058mMv6EkmS0JPV7FM9QEH2OwtRqC63Q4KIzUMRI1R6JSJOoYiaKJQ2ZOTNi-sUHt_BT65NOvpNuT0Nb3zT7xfpSYwDIZw-k32DSYKQ</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Shi, ShaoGuang</creator><creator>Li, JunFeng</creator><general>Springer Berlin Heidelberg</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20131001</creationdate><title>Global smoothing for the periodic Benjamin equation in low-regularity spaces</title><author>Shi, ShaoGuang ; Li, JunFeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-5d0ccab29c20b2558ab93b88a74d858542e8d666985ecf0f24017ca58d7c30f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applications of Mathematics</topic><topic>Astronomy</topic><topic>Benjamin方程</topic><topic>China</topic><topic>Evolution</topic><topic>Functions (mathematics)</topic><topic>KdV</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Norms</topic><topic>Polynomials</topic><topic>Smoothing</topic><topic>Symmetry</topic><topic>函数</topic><topic>周期性</topic><topic>多项式</topic><topic>对称性</topic><topic>德弗里斯</topic><topic>空间平滑</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, ShaoGuang</creatorcontrib><creatorcontrib>Li, JunFeng</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, ShaoGuang</au><au>Li, JunFeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global smoothing for the periodic Benjamin equation in low-regularity spaces</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><addtitle>SCIENCE CHINA Mathematics</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>56</volume><issue>10</issue><spage>2051</spage><epage>2061</epage><pages>2051-2061</pages><issn>1674-7283</issn><issn>1006-9283</issn><eissn>1869-1862</eissn><abstract>This paper is intended as an attempt to set up the global smoothing for the periodic Benjamin equation. It is shown that for Hs(T) initial data with 8 〉 -1/2 and for any s 〈 s1〈 min{s + 1,3s + 1}, the difference of the evolution with the linear evolution is in Hs1 (T) for all times, with at most polynomial growing HS1 norm. Unlike Korteweg-de Vries (KdV) equation, there are less symmetries of the Benjamin system, especially for the resonant function. The new ingredient is that we need to deal with some new difficulties that are caused by the lack of symmetries.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11425-013-4672-3</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7283
ispartof Science China. Mathematics, 2013-10, Vol.56 (10), p.2051-2061
issn 1674-7283
1006-9283
1869-1862
language eng
recordid cdi_proquest_miscellaneous_1671536547
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Applications of Mathematics
Astronomy
Benjamin方程
China
Evolution
Functions (mathematics)
KdV
Mathematical analysis
Mathematics
Mathematics and Statistics
Norms
Polynomials
Smoothing
Symmetry
函数
周期性
多项式
对称性
德弗里斯
空间平滑
title Global smoothing for the periodic Benjamin equation in low-regularity spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A26%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20smoothing%20for%20the%20periodic%20Benjamin%20equation%20in%20low-regularity%20spaces&rft.jtitle=Science%20China.%20Mathematics&rft.au=Shi,%20ShaoGuang&rft.date=2013-10-01&rft.volume=56&rft.issue=10&rft.spage=2051&rft.epage=2061&rft.pages=2051-2061&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-013-4672-3&rft_dat=%3Cproquest_cross%3E1677978080%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1620078230&rft_id=info:pmid/&rft_cqvip_id=47184015&rfr_iscdi=true