Artificial Immune Systems for Anomaly Detection in Ambient Assisted Living Applications

This paper makes a case for the use of Artificial Immune Systems (AIS) in the area of Ambient Assisted Living (AAL) for anomaly detection and long term monitoring. A brief literature review of some of the solutions developed for AAL and the use of AIS in other fields of research is presented. The au...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of ambient computing and intelligence 2013-07, Vol.5 (3), p.1-15
Hauptverfasser: Bersch, Sebastian, Azzi, Djamel, Khusainov, Rinat, Achumba, Ifeyinwa E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 3
container_start_page 1
container_title International journal of ambient computing and intelligence
container_volume 5
creator Bersch, Sebastian
Azzi, Djamel
Khusainov, Rinat
Achumba, Ifeyinwa E
description This paper makes a case for the use of Artificial Immune Systems (AIS) in the area of Ambient Assisted Living (AAL) for anomaly detection and long term monitoring. A brief literature review of some of the solutions developed for AAL and the use of AIS in other fields of research is presented. The authors advocate the use of AIS in AAL based on their unique features and their ability to address problems specific to the long term monitoring of people. An improved method for the optimisation of detector generation for AIS, which uses a novel intelligent seeding technique, is presented. The new seeding technique is compared with two other detector seeding methods. The simulation results are presented showing an improvement in the classification accuracy and warranting current and future work.
doi_str_mv 10.4018/ijaci.2013070101
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671534604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759354151</galeid><sourcerecordid>A759354151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-d00d05ed714b35e85394b48d4f67843c0580856b6e276999b4bf57c466eb10ee3</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhiNEJUrLnaMlhMSBLXb8lRyjQqHSShxaxNFyHDvMKnGCJ0Haf0-WrLptJU7jwzPvjOfJsreMXgnKik-wsw6ucso41ZRR9iI7Z6VgG5UL-fLhzfWr7DXijlIlqdTn2c8qTRDAge3Ibd_P0ZO7PU6-RxKGRKo49Lbbk89-8m6CIRKIpOpr8HEiFSIsaEO28AdiS6px7MDZA4aX2VmwHfo3x3qR_bj5cn_9bbP9_vX2utpunCjltGkobaj0jWai5tIXkpeiFkUjgtKF4I7KghZS1crnWpVlWYs6SO2EUr5m1Ht-kX1Yc8c0_J49TqYHdL7rbPTDjIYpzSQXiooFffcM3Q1zist2Ji85KxTX4hHV2s4biGGYknWHUFNpWXIpmGQL9fERVc8I0S_XiAjtrwlbOyM-xemKuzQgJh_MmKC3aW8YNQd95p8-c9K3tLw_bmvR2S4kGx3gQ19e5Hku-IG7WTlo4fSh1ahZjZqjUbMY_d88ebrkk6DnnBmbwP8CTbS94w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931863744</pqid></control><display><type>article</type><title>Artificial Immune Systems for Anomaly Detection in Ambient Assisted Living Applications</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Bersch, Sebastian ; Azzi, Djamel ; Khusainov, Rinat ; Achumba, Ifeyinwa E</creator><creatorcontrib>Bersch, Sebastian ; Azzi, Djamel ; Khusainov, Rinat ; Achumba, Ifeyinwa E</creatorcontrib><description>This paper makes a case for the use of Artificial Immune Systems (AIS) in the area of Ambient Assisted Living (AAL) for anomaly detection and long term monitoring. A brief literature review of some of the solutions developed for AAL and the use of AIS in other fields of research is presented. The authors advocate the use of AIS in AAL based on their unique features and their ability to address problems specific to the long term monitoring of people. An improved method for the optimisation of detector generation for AIS, which uses a novel intelligent seeding technique, is presented. The new seeding technique is compared with two other detector seeding methods. The simulation results are presented showing an improvement in the classification accuracy and warranting current and future work.</description><identifier>ISSN: 1941-6237</identifier><identifier>EISSN: 1941-6245</identifier><identifier>DOI: 10.4018/ijaci.2013070101</identifier><language>eng</language><publisher>Hershey, PA: IGI Global</publisher><subject>Anomalies ; Applied sciences ; Artificial intelligence ; Assisted living facilities ; Biological and medical sciences ; Classification ; Computer science; control theory; systems ; Computerized, statistical medical data processing and models in biomedicine ; Data processing. List processing. Character string processing ; Detectors ; Exact sciences and technology ; Immune system ; Intelligence ; Learning and adaptive systems ; Literature reviews ; Medical computing and teaching ; Medical sciences ; Memory organisation. Data processing ; Monitoring ; Nucleation ; Optimization ; Simulation methods ; Software</subject><ispartof>International journal of ambient computing and intelligence, 2013-07, Vol.5 (3), p.1-15</ispartof><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2013 IGI Global</rights><rights>Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-d00d05ed714b35e85394b48d4f67843c0580856b6e276999b4bf57c466eb10ee3</citedby><cites>FETCH-LOGICAL-c495t-d00d05ed714b35e85394b48d4f67843c0580856b6e276999b4bf57c466eb10ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2931863744?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,33744,43804,64384,64386,64388,72240</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28222431$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bersch, Sebastian</creatorcontrib><creatorcontrib>Azzi, Djamel</creatorcontrib><creatorcontrib>Khusainov, Rinat</creatorcontrib><creatorcontrib>Achumba, Ifeyinwa E</creatorcontrib><title>Artificial Immune Systems for Anomaly Detection in Ambient Assisted Living Applications</title><title>International journal of ambient computing and intelligence</title><description>This paper makes a case for the use of Artificial Immune Systems (AIS) in the area of Ambient Assisted Living (AAL) for anomaly detection and long term monitoring. A brief literature review of some of the solutions developed for AAL and the use of AIS in other fields of research is presented. The authors advocate the use of AIS in AAL based on their unique features and their ability to address problems specific to the long term monitoring of people. An improved method for the optimisation of detector generation for AIS, which uses a novel intelligent seeding technique, is presented. The new seeding technique is compared with two other detector seeding methods. The simulation results are presented showing an improvement in the classification accuracy and warranting current and future work.</description><subject>Anomalies</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Assisted living facilities</subject><subject>Biological and medical sciences</subject><subject>Classification</subject><subject>Computer science; control theory; systems</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Data processing. List processing. Character string processing</subject><subject>Detectors</subject><subject>Exact sciences and technology</subject><subject>Immune system</subject><subject>Intelligence</subject><subject>Learning and adaptive systems</subject><subject>Literature reviews</subject><subject>Medical computing and teaching</subject><subject>Medical sciences</subject><subject>Memory organisation. Data processing</subject><subject>Monitoring</subject><subject>Nucleation</subject><subject>Optimization</subject><subject>Simulation methods</subject><subject>Software</subject><issn>1941-6237</issn><issn>1941-6245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1v1DAQhiNEJUrLnaMlhMSBLXb8lRyjQqHSShxaxNFyHDvMKnGCJ0Haf0-WrLptJU7jwzPvjOfJsreMXgnKik-wsw6ucso41ZRR9iI7Z6VgG5UL-fLhzfWr7DXijlIlqdTn2c8qTRDAge3Ibd_P0ZO7PU6-RxKGRKo49Lbbk89-8m6CIRKIpOpr8HEiFSIsaEO28AdiS6px7MDZA4aX2VmwHfo3x3qR_bj5cn_9bbP9_vX2utpunCjltGkobaj0jWai5tIXkpeiFkUjgtKF4I7KghZS1crnWpVlWYs6SO2EUr5m1Ht-kX1Yc8c0_J49TqYHdL7rbPTDjIYpzSQXiooFffcM3Q1zist2Ji85KxTX4hHV2s4biGGYknWHUFNpWXIpmGQL9fERVc8I0S_XiAjtrwlbOyM-xemKuzQgJh_MmKC3aW8YNQd95p8-c9K3tLw_bmvR2S4kGx3gQ19e5Hku-IG7WTlo4fSh1ahZjZqjUbMY_d88ebrkk6DnnBmbwP8CTbS94w</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Bersch, Sebastian</creator><creator>Azzi, Djamel</creator><creator>Khusainov, Rinat</creator><creator>Achumba, Ifeyinwa E</creator><general>IGI Global</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>7SC</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130701</creationdate><title>Artificial Immune Systems for Anomaly Detection in Ambient Assisted Living Applications</title><author>Bersch, Sebastian ; Azzi, Djamel ; Khusainov, Rinat ; Achumba, Ifeyinwa E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-d00d05ed714b35e85394b48d4f67843c0580856b6e276999b4bf57c466eb10ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anomalies</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Assisted living facilities</topic><topic>Biological and medical sciences</topic><topic>Classification</topic><topic>Computer science; control theory; systems</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Data processing. List processing. Character string processing</topic><topic>Detectors</topic><topic>Exact sciences and technology</topic><topic>Immune system</topic><topic>Intelligence</topic><topic>Learning and adaptive systems</topic><topic>Literature reviews</topic><topic>Medical computing and teaching</topic><topic>Medical sciences</topic><topic>Memory organisation. Data processing</topic><topic>Monitoring</topic><topic>Nucleation</topic><topic>Optimization</topic><topic>Simulation methods</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bersch, Sebastian</creatorcontrib><creatorcontrib>Azzi, Djamel</creatorcontrib><creatorcontrib>Khusainov, Rinat</creatorcontrib><creatorcontrib>Achumba, Ifeyinwa E</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of ambient computing and intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bersch, Sebastian</au><au>Azzi, Djamel</au><au>Khusainov, Rinat</au><au>Achumba, Ifeyinwa E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Immune Systems for Anomaly Detection in Ambient Assisted Living Applications</atitle><jtitle>International journal of ambient computing and intelligence</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>5</volume><issue>3</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1941-6237</issn><eissn>1941-6245</eissn><abstract>This paper makes a case for the use of Artificial Immune Systems (AIS) in the area of Ambient Assisted Living (AAL) for anomaly detection and long term monitoring. A brief literature review of some of the solutions developed for AAL and the use of AIS in other fields of research is presented. The authors advocate the use of AIS in AAL based on their unique features and their ability to address problems specific to the long term monitoring of people. An improved method for the optimisation of detector generation for AIS, which uses a novel intelligent seeding technique, is presented. The new seeding technique is compared with two other detector seeding methods. The simulation results are presented showing an improvement in the classification accuracy and warranting current and future work.</abstract><cop>Hershey, PA</cop><pub>IGI Global</pub><doi>10.4018/ijaci.2013070101</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1941-6237
ispartof International journal of ambient computing and intelligence, 2013-07, Vol.5 (3), p.1-15
issn 1941-6237
1941-6245
language eng
recordid cdi_proquest_miscellaneous_1671534604
source ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central
subjects Anomalies
Applied sciences
Artificial intelligence
Assisted living facilities
Biological and medical sciences
Classification
Computer science
control theory
systems
Computerized, statistical medical data processing and models in biomedicine
Data processing. List processing. Character string processing
Detectors
Exact sciences and technology
Immune system
Intelligence
Learning and adaptive systems
Literature reviews
Medical computing and teaching
Medical sciences
Memory organisation. Data processing
Monitoring
Nucleation
Optimization
Simulation methods
Software
title Artificial Immune Systems for Anomaly Detection in Ambient Assisted Living Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A28%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Immune%20Systems%20for%20Anomaly%20Detection%20in%20Ambient%20Assisted%20Living%20Applications&rft.jtitle=International%20journal%20of%20ambient%20computing%20and%20intelligence&rft.au=Bersch,%20Sebastian&rft.date=2013-07-01&rft.volume=5&rft.issue=3&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1941-6237&rft.eissn=1941-6245&rft_id=info:doi/10.4018/ijaci.2013070101&rft_dat=%3Cgale_proqu%3EA759354151%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931863744&rft_id=info:pmid/&rft_galeid=A759354151&rfr_iscdi=true