Artificial Immune Systems for Anomaly Detection in Ambient Assisted Living Applications
This paper makes a case for the use of Artificial Immune Systems (AIS) in the area of Ambient Assisted Living (AAL) for anomaly detection and long term monitoring. A brief literature review of some of the solutions developed for AAL and the use of AIS in other fields of research is presented. The au...
Gespeichert in:
Veröffentlicht in: | International journal of ambient computing and intelligence 2013-07, Vol.5 (3), p.1-15 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | International journal of ambient computing and intelligence |
container_volume | 5 |
creator | Bersch, Sebastian Azzi, Djamel Khusainov, Rinat Achumba, Ifeyinwa E |
description | This paper makes a case for the use of Artificial Immune Systems (AIS) in the area of Ambient Assisted Living (AAL) for anomaly detection and long term monitoring. A brief literature review of some of the solutions developed for AAL and the use of AIS in other fields of research is presented. The authors advocate the use of AIS in AAL based on their unique features and their ability to address problems specific to the long term monitoring of people. An improved method for the optimisation of detector generation for AIS, which uses a novel intelligent seeding technique, is presented. The new seeding technique is compared with two other detector seeding methods. The simulation results are presented showing an improvement in the classification accuracy and warranting current and future work. |
doi_str_mv | 10.4018/ijaci.2013070101 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671534604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759354151</galeid><sourcerecordid>A759354151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-d00d05ed714b35e85394b48d4f67843c0580856b6e276999b4bf57c466eb10ee3</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhiNEJUrLnaMlhMSBLXb8lRyjQqHSShxaxNFyHDvMKnGCJ0Haf0-WrLptJU7jwzPvjOfJsreMXgnKik-wsw6ucso41ZRR9iI7Z6VgG5UL-fLhzfWr7DXijlIlqdTn2c8qTRDAge3Ibd_P0ZO7PU6-RxKGRKo49Lbbk89-8m6CIRKIpOpr8HEiFSIsaEO28AdiS6px7MDZA4aX2VmwHfo3x3qR_bj5cn_9bbP9_vX2utpunCjltGkobaj0jWai5tIXkpeiFkUjgtKF4I7KghZS1crnWpVlWYs6SO2EUr5m1Ht-kX1Yc8c0_J49TqYHdL7rbPTDjIYpzSQXiooFffcM3Q1zist2Ji85KxTX4hHV2s4biGGYknWHUFNpWXIpmGQL9fERVc8I0S_XiAjtrwlbOyM-xemKuzQgJh_MmKC3aW8YNQd95p8-c9K3tLw_bmvR2S4kGx3gQ19e5Hku-IG7WTlo4fSh1ahZjZqjUbMY_d88ebrkk6DnnBmbwP8CTbS94w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931863744</pqid></control><display><type>article</type><title>Artificial Immune Systems for Anomaly Detection in Ambient Assisted Living Applications</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Bersch, Sebastian ; Azzi, Djamel ; Khusainov, Rinat ; Achumba, Ifeyinwa E</creator><creatorcontrib>Bersch, Sebastian ; Azzi, Djamel ; Khusainov, Rinat ; Achumba, Ifeyinwa E</creatorcontrib><description>This paper makes a case for the use of Artificial Immune Systems (AIS) in the area of Ambient Assisted Living (AAL) for anomaly detection and long term monitoring. A brief literature review of some of the solutions developed for AAL and the use of AIS in other fields of research is presented. The authors advocate the use of AIS in AAL based on their unique features and their ability to address problems specific to the long term monitoring of people. An improved method for the optimisation of detector generation for AIS, which uses a novel intelligent seeding technique, is presented. The new seeding technique is compared with two other detector seeding methods. The simulation results are presented showing an improvement in the classification accuracy and warranting current and future work.</description><identifier>ISSN: 1941-6237</identifier><identifier>EISSN: 1941-6245</identifier><identifier>DOI: 10.4018/ijaci.2013070101</identifier><language>eng</language><publisher>Hershey, PA: IGI Global</publisher><subject>Anomalies ; Applied sciences ; Artificial intelligence ; Assisted living facilities ; Biological and medical sciences ; Classification ; Computer science; control theory; systems ; Computerized, statistical medical data processing and models in biomedicine ; Data processing. List processing. Character string processing ; Detectors ; Exact sciences and technology ; Immune system ; Intelligence ; Learning and adaptive systems ; Literature reviews ; Medical computing and teaching ; Medical sciences ; Memory organisation. Data processing ; Monitoring ; Nucleation ; Optimization ; Simulation methods ; Software</subject><ispartof>International journal of ambient computing and intelligence, 2013-07, Vol.5 (3), p.1-15</ispartof><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2013 IGI Global</rights><rights>Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-d00d05ed714b35e85394b48d4f67843c0580856b6e276999b4bf57c466eb10ee3</citedby><cites>FETCH-LOGICAL-c495t-d00d05ed714b35e85394b48d4f67843c0580856b6e276999b4bf57c466eb10ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2931863744?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,33744,43804,64384,64386,64388,72240</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28222431$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bersch, Sebastian</creatorcontrib><creatorcontrib>Azzi, Djamel</creatorcontrib><creatorcontrib>Khusainov, Rinat</creatorcontrib><creatorcontrib>Achumba, Ifeyinwa E</creatorcontrib><title>Artificial Immune Systems for Anomaly Detection in Ambient Assisted Living Applications</title><title>International journal of ambient computing and intelligence</title><description>This paper makes a case for the use of Artificial Immune Systems (AIS) in the area of Ambient Assisted Living (AAL) for anomaly detection and long term monitoring. A brief literature review of some of the solutions developed for AAL and the use of AIS in other fields of research is presented. The authors advocate the use of AIS in AAL based on their unique features and their ability to address problems specific to the long term monitoring of people. An improved method for the optimisation of detector generation for AIS, which uses a novel intelligent seeding technique, is presented. The new seeding technique is compared with two other detector seeding methods. The simulation results are presented showing an improvement in the classification accuracy and warranting current and future work.</description><subject>Anomalies</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Assisted living facilities</subject><subject>Biological and medical sciences</subject><subject>Classification</subject><subject>Computer science; control theory; systems</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Data processing. List processing. Character string processing</subject><subject>Detectors</subject><subject>Exact sciences and technology</subject><subject>Immune system</subject><subject>Intelligence</subject><subject>Learning and adaptive systems</subject><subject>Literature reviews</subject><subject>Medical computing and teaching</subject><subject>Medical sciences</subject><subject>Memory organisation. Data processing</subject><subject>Monitoring</subject><subject>Nucleation</subject><subject>Optimization</subject><subject>Simulation methods</subject><subject>Software</subject><issn>1941-6237</issn><issn>1941-6245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1v1DAQhiNEJUrLnaMlhMSBLXb8lRyjQqHSShxaxNFyHDvMKnGCJ0Haf0-WrLptJU7jwzPvjOfJsreMXgnKik-wsw6ucso41ZRR9iI7Z6VgG5UL-fLhzfWr7DXijlIlqdTn2c8qTRDAge3Ibd_P0ZO7PU6-RxKGRKo49Lbbk89-8m6CIRKIpOpr8HEiFSIsaEO28AdiS6px7MDZA4aX2VmwHfo3x3qR_bj5cn_9bbP9_vX2utpunCjltGkobaj0jWai5tIXkpeiFkUjgtKF4I7KghZS1crnWpVlWYs6SO2EUr5m1Ht-kX1Yc8c0_J49TqYHdL7rbPTDjIYpzSQXiooFffcM3Q1zist2Ji85KxTX4hHV2s4biGGYknWHUFNpWXIpmGQL9fERVc8I0S_XiAjtrwlbOyM-xemKuzQgJh_MmKC3aW8YNQd95p8-c9K3tLw_bmvR2S4kGx3gQ19e5Hku-IG7WTlo4fSh1ahZjZqjUbMY_d88ebrkk6DnnBmbwP8CTbS94w</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Bersch, Sebastian</creator><creator>Azzi, Djamel</creator><creator>Khusainov, Rinat</creator><creator>Achumba, Ifeyinwa E</creator><general>IGI Global</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>7SC</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130701</creationdate><title>Artificial Immune Systems for Anomaly Detection in Ambient Assisted Living Applications</title><author>Bersch, Sebastian ; Azzi, Djamel ; Khusainov, Rinat ; Achumba, Ifeyinwa E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-d00d05ed714b35e85394b48d4f67843c0580856b6e276999b4bf57c466eb10ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anomalies</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Assisted living facilities</topic><topic>Biological and medical sciences</topic><topic>Classification</topic><topic>Computer science; control theory; systems</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Data processing. List processing. Character string processing</topic><topic>Detectors</topic><topic>Exact sciences and technology</topic><topic>Immune system</topic><topic>Intelligence</topic><topic>Learning and adaptive systems</topic><topic>Literature reviews</topic><topic>Medical computing and teaching</topic><topic>Medical sciences</topic><topic>Memory organisation. Data processing</topic><topic>Monitoring</topic><topic>Nucleation</topic><topic>Optimization</topic><topic>Simulation methods</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bersch, Sebastian</creatorcontrib><creatorcontrib>Azzi, Djamel</creatorcontrib><creatorcontrib>Khusainov, Rinat</creatorcontrib><creatorcontrib>Achumba, Ifeyinwa E</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of ambient computing and intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bersch, Sebastian</au><au>Azzi, Djamel</au><au>Khusainov, Rinat</au><au>Achumba, Ifeyinwa E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Immune Systems for Anomaly Detection in Ambient Assisted Living Applications</atitle><jtitle>International journal of ambient computing and intelligence</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>5</volume><issue>3</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1941-6237</issn><eissn>1941-6245</eissn><abstract>This paper makes a case for the use of Artificial Immune Systems (AIS) in the area of Ambient Assisted Living (AAL) for anomaly detection and long term monitoring. A brief literature review of some of the solutions developed for AAL and the use of AIS in other fields of research is presented. The authors advocate the use of AIS in AAL based on their unique features and their ability to address problems specific to the long term monitoring of people. An improved method for the optimisation of detector generation for AIS, which uses a novel intelligent seeding technique, is presented. The new seeding technique is compared with two other detector seeding methods. The simulation results are presented showing an improvement in the classification accuracy and warranting current and future work.</abstract><cop>Hershey, PA</cop><pub>IGI Global</pub><doi>10.4018/ijaci.2013070101</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1941-6237 |
ispartof | International journal of ambient computing and intelligence, 2013-07, Vol.5 (3), p.1-15 |
issn | 1941-6237 1941-6245 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671534604 |
source | ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central |
subjects | Anomalies Applied sciences Artificial intelligence Assisted living facilities Biological and medical sciences Classification Computer science control theory systems Computerized, statistical medical data processing and models in biomedicine Data processing. List processing. Character string processing Detectors Exact sciences and technology Immune system Intelligence Learning and adaptive systems Literature reviews Medical computing and teaching Medical sciences Memory organisation. Data processing Monitoring Nucleation Optimization Simulation methods Software |
title | Artificial Immune Systems for Anomaly Detection in Ambient Assisted Living Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A28%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Immune%20Systems%20for%20Anomaly%20Detection%20in%20Ambient%20Assisted%20Living%20Applications&rft.jtitle=International%20journal%20of%20ambient%20computing%20and%20intelligence&rft.au=Bersch,%20Sebastian&rft.date=2013-07-01&rft.volume=5&rft.issue=3&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1941-6237&rft.eissn=1941-6245&rft_id=info:doi/10.4018/ijaci.2013070101&rft_dat=%3Cgale_proqu%3EA759354151%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931863744&rft_id=info:pmid/&rft_galeid=A759354151&rfr_iscdi=true |