Event-Based Modeling of Rapid Single-Flux Quantum Basic Cells With Timing Jitter

The realizable integration level of rapid single-flux quantum (RSFQ) circuits has reached the order of magnitude of 20 000 Josephson junctions, which enables the creation of advanced complex circuits such as microprocessors or digital signal processors. During the design of those complex circuits, b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2013-10, Vol.23 (5), p.1301707-1301707
Hauptverfasser: Wetzstein, Olaf, Mueller, Marcus, Pacholik, Alexander, Ortlepp, Thomas, Fengler, Wolfgang, Meyer, Hans-Georg, Toepfer, Hannes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1301707
container_issue 5
container_start_page 1301707
container_title IEEE transactions on applied superconductivity
container_volume 23
creator Wetzstein, Olaf
Mueller, Marcus
Pacholik, Alexander
Ortlepp, Thomas
Fengler, Wolfgang
Meyer, Hans-Georg
Toepfer, Hannes
description The realizable integration level of rapid single-flux quantum (RSFQ) circuits has reached the order of magnitude of 20 000 Josephson junctions, which enables the creation of advanced complex circuits such as microprocessors or digital signal processors. During the design of those complex circuits, behavioral arrangement alone is insufficient; instead, the inclusion of statistical spread is required for timing and parameter verification. The simulation of complex circuits combined with the consideration of timing jitter effects is a very challenging task for both transient simulation on the electrical network level and simulation with hardware description languages. In this paper, a new approach based on discrete-event simulations is presented. By this method, the pulse-driven characteristics of RSFQ circuits can be directly transferred into a model describing the behavior on the transaction level. The realized models of basic RSFQ cells include stochastic timing effects. This approach is demonstrated by modeling a nontrivial cell and compared against the conventional transient simulation concerning the accuracy of the results and the computation time.
doi_str_mv 10.1109/TASC.2013.2266403
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671529084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6585789</ieee_id><sourcerecordid>1671529084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-bb8cdb946712d2afaae5a0793da89cd6bbd720d5f79f71138f8cf0f5453597343</originalsourceid><addsrcrecordid>eNpdkMtKAzEUhoMoWKsPIG4CbtxMzWUySZa1tF5QvLTiMmQmiabMpU5mRN_eDC0uXJ1z4Pt_Dh8ApxhNMEbycjVdziYEYTohJMtSRPfACDMmEsIw2487YjgRhNBDcBTCGiGcipSNwNP8y9ZdcqWDNfChMbb09TtsHHzRG2_gMl6lTRZl_w2fe113fQUj6ws4s2UZ4JvvPuDKV0PoznedbY_BgdNlsCe7OQavi_lqdpPcP17fzqb3SUG46JI8F4XJZZpxTAzRTmvLNOKSGi1kYbI8N5wgwxyXjmNMhROFQ46ljDLJaUrH4GLbu2mbz96GTlU-FPEpXdumDwrHZkYkEgN6_g9dN31bx-8UTjmlGGWcRApvqaJtQmitU5vWV7r9URipwbEaHKvBsdo5jpmzbcZba__4jAnGhaS_U4R2Sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1473310672</pqid></control><display><type>article</type><title>Event-Based Modeling of Rapid Single-Flux Quantum Basic Cells With Timing Jitter</title><source>IEEE Electronic Library (IEL)</source><creator>Wetzstein, Olaf ; Mueller, Marcus ; Pacholik, Alexander ; Ortlepp, Thomas ; Fengler, Wolfgang ; Meyer, Hans-Georg ; Toepfer, Hannes</creator><creatorcontrib>Wetzstein, Olaf ; Mueller, Marcus ; Pacholik, Alexander ; Ortlepp, Thomas ; Fengler, Wolfgang ; Meyer, Hans-Georg ; Toepfer, Hannes</creatorcontrib><description>The realizable integration level of rapid single-flux quantum (RSFQ) circuits has reached the order of magnitude of 20 000 Josephson junctions, which enables the creation of advanced complex circuits such as microprocessors or digital signal processors. During the design of those complex circuits, behavioral arrangement alone is insufficient; instead, the inclusion of statistical spread is required for timing and parameter verification. The simulation of complex circuits combined with the consideration of timing jitter effects is a very challenging task for both transient simulation on the electrical network level and simulation with hardware description languages. In this paper, a new approach based on discrete-event simulations is presented. By this method, the pulse-driven characteristics of RSFQ circuits can be directly transferred into a model describing the behavior on the transaction level. The realized models of basic RSFQ cells include stochastic timing effects. This approach is demonstrated by modeling a nontrivial cell and compared against the conventional transient simulation concerning the accuracy of the results and the computation time.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2013.2266403</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Behavior ; Circuits ; Computational modeling ; Computer simulation ; Delay effects ; Delays ; Digital signal processors ; Discrete-event simulation (DES) ; Finite element analysis ; Inclusions ; Integrated circuit modeling ; Jitter ; Mathematical models ; modeling ; Processors ; rapid single-flux quantum (RSFQ) ; Simulation ; Spreads ; Time measurements ; Timing jitter ; Transient analysis ; VHSIC hardware description language (VHDL)</subject><ispartof>IEEE transactions on applied superconductivity, 2013-10, Vol.23 (5), p.1301707-1301707</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c278t-bb8cdb946712d2afaae5a0793da89cd6bbd720d5f79f71138f8cf0f5453597343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6585789$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6585789$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wetzstein, Olaf</creatorcontrib><creatorcontrib>Mueller, Marcus</creatorcontrib><creatorcontrib>Pacholik, Alexander</creatorcontrib><creatorcontrib>Ortlepp, Thomas</creatorcontrib><creatorcontrib>Fengler, Wolfgang</creatorcontrib><creatorcontrib>Meyer, Hans-Georg</creatorcontrib><creatorcontrib>Toepfer, Hannes</creatorcontrib><title>Event-Based Modeling of Rapid Single-Flux Quantum Basic Cells With Timing Jitter</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The realizable integration level of rapid single-flux quantum (RSFQ) circuits has reached the order of magnitude of 20 000 Josephson junctions, which enables the creation of advanced complex circuits such as microprocessors or digital signal processors. During the design of those complex circuits, behavioral arrangement alone is insufficient; instead, the inclusion of statistical spread is required for timing and parameter verification. The simulation of complex circuits combined with the consideration of timing jitter effects is a very challenging task for both transient simulation on the electrical network level and simulation with hardware description languages. In this paper, a new approach based on discrete-event simulations is presented. By this method, the pulse-driven characteristics of RSFQ circuits can be directly transferred into a model describing the behavior on the transaction level. The realized models of basic RSFQ cells include stochastic timing effects. This approach is demonstrated by modeling a nontrivial cell and compared against the conventional transient simulation concerning the accuracy of the results and the computation time.</description><subject>Behavior</subject><subject>Circuits</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Delay effects</subject><subject>Delays</subject><subject>Digital signal processors</subject><subject>Discrete-event simulation (DES)</subject><subject>Finite element analysis</subject><subject>Inclusions</subject><subject>Integrated circuit modeling</subject><subject>Jitter</subject><subject>Mathematical models</subject><subject>modeling</subject><subject>Processors</subject><subject>rapid single-flux quantum (RSFQ)</subject><subject>Simulation</subject><subject>Spreads</subject><subject>Time measurements</subject><subject>Timing jitter</subject><subject>Transient analysis</subject><subject>VHSIC hardware description language (VHDL)</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtKAzEUhoMoWKsPIG4CbtxMzWUySZa1tF5QvLTiMmQmiabMpU5mRN_eDC0uXJ1z4Pt_Dh8ApxhNMEbycjVdziYEYTohJMtSRPfACDMmEsIw2487YjgRhNBDcBTCGiGcipSNwNP8y9ZdcqWDNfChMbb09TtsHHzRG2_gMl6lTRZl_w2fe113fQUj6ws4s2UZ4JvvPuDKV0PoznedbY_BgdNlsCe7OQavi_lqdpPcP17fzqb3SUG46JI8F4XJZZpxTAzRTmvLNOKSGi1kYbI8N5wgwxyXjmNMhROFQ46ljDLJaUrH4GLbu2mbz96GTlU-FPEpXdumDwrHZkYkEgN6_g9dN31bx-8UTjmlGGWcRApvqaJtQmitU5vWV7r9URipwbEaHKvBsdo5jpmzbcZba__4jAnGhaS_U4R2Sw</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Wetzstein, Olaf</creator><creator>Mueller, Marcus</creator><creator>Pacholik, Alexander</creator><creator>Ortlepp, Thomas</creator><creator>Fengler, Wolfgang</creator><creator>Meyer, Hans-Georg</creator><creator>Toepfer, Hannes</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20131001</creationdate><title>Event-Based Modeling of Rapid Single-Flux Quantum Basic Cells With Timing Jitter</title><author>Wetzstein, Olaf ; Mueller, Marcus ; Pacholik, Alexander ; Ortlepp, Thomas ; Fengler, Wolfgang ; Meyer, Hans-Georg ; Toepfer, Hannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-bb8cdb946712d2afaae5a0793da89cd6bbd720d5f79f71138f8cf0f5453597343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Behavior</topic><topic>Circuits</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Delay effects</topic><topic>Delays</topic><topic>Digital signal processors</topic><topic>Discrete-event simulation (DES)</topic><topic>Finite element analysis</topic><topic>Inclusions</topic><topic>Integrated circuit modeling</topic><topic>Jitter</topic><topic>Mathematical models</topic><topic>modeling</topic><topic>Processors</topic><topic>rapid single-flux quantum (RSFQ)</topic><topic>Simulation</topic><topic>Spreads</topic><topic>Time measurements</topic><topic>Timing jitter</topic><topic>Transient analysis</topic><topic>VHSIC hardware description language (VHDL)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wetzstein, Olaf</creatorcontrib><creatorcontrib>Mueller, Marcus</creatorcontrib><creatorcontrib>Pacholik, Alexander</creatorcontrib><creatorcontrib>Ortlepp, Thomas</creatorcontrib><creatorcontrib>Fengler, Wolfgang</creatorcontrib><creatorcontrib>Meyer, Hans-Georg</creatorcontrib><creatorcontrib>Toepfer, Hannes</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wetzstein, Olaf</au><au>Mueller, Marcus</au><au>Pacholik, Alexander</au><au>Ortlepp, Thomas</au><au>Fengler, Wolfgang</au><au>Meyer, Hans-Georg</au><au>Toepfer, Hannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Event-Based Modeling of Rapid Single-Flux Quantum Basic Cells With Timing Jitter</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2013-10-01</date><risdate>2013</risdate><volume>23</volume><issue>5</issue><spage>1301707</spage><epage>1301707</epage><pages>1301707-1301707</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The realizable integration level of rapid single-flux quantum (RSFQ) circuits has reached the order of magnitude of 20 000 Josephson junctions, which enables the creation of advanced complex circuits such as microprocessors or digital signal processors. During the design of those complex circuits, behavioral arrangement alone is insufficient; instead, the inclusion of statistical spread is required for timing and parameter verification. The simulation of complex circuits combined with the consideration of timing jitter effects is a very challenging task for both transient simulation on the electrical network level and simulation with hardware description languages. In this paper, a new approach based on discrete-event simulations is presented. By this method, the pulse-driven characteristics of RSFQ circuits can be directly transferred into a model describing the behavior on the transaction level. The realized models of basic RSFQ cells include stochastic timing effects. This approach is demonstrated by modeling a nontrivial cell and compared against the conventional transient simulation concerning the accuracy of the results and the computation time.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2013.2266403</doi><tpages>1</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2013-10, Vol.23 (5), p.1301707-1301707
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_miscellaneous_1671529084
source IEEE Electronic Library (IEL)
subjects Behavior
Circuits
Computational modeling
Computer simulation
Delay effects
Delays
Digital signal processors
Discrete-event simulation (DES)
Finite element analysis
Inclusions
Integrated circuit modeling
Jitter
Mathematical models
modeling
Processors
rapid single-flux quantum (RSFQ)
Simulation
Spreads
Time measurements
Timing jitter
Transient analysis
VHSIC hardware description language (VHDL)
title Event-Based Modeling of Rapid Single-Flux Quantum Basic Cells With Timing Jitter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A18%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Event-Based%20Modeling%20of%20Rapid%20Single-Flux%20Quantum%20Basic%20Cells%20With%20Timing%20Jitter&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Wetzstein,%20Olaf&rft.date=2013-10-01&rft.volume=23&rft.issue=5&rft.spage=1301707&rft.epage=1301707&rft.pages=1301707-1301707&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2013.2266403&rft_dat=%3Cproquest_RIE%3E1671529084%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1473310672&rft_id=info:pmid/&rft_ieee_id=6585789&rfr_iscdi=true