Event-Based Modeling of Rapid Single-Flux Quantum Basic Cells With Timing Jitter
The realizable integration level of rapid single-flux quantum (RSFQ) circuits has reached the order of magnitude of 20 000 Josephson junctions, which enables the creation of advanced complex circuits such as microprocessors or digital signal processors. During the design of those complex circuits, b...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2013-10, Vol.23 (5), p.1301707-1301707 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1301707 |
---|---|
container_issue | 5 |
container_start_page | 1301707 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 23 |
creator | Wetzstein, Olaf Mueller, Marcus Pacholik, Alexander Ortlepp, Thomas Fengler, Wolfgang Meyer, Hans-Georg Toepfer, Hannes |
description | The realizable integration level of rapid single-flux quantum (RSFQ) circuits has reached the order of magnitude of 20 000 Josephson junctions, which enables the creation of advanced complex circuits such as microprocessors or digital signal processors. During the design of those complex circuits, behavioral arrangement alone is insufficient; instead, the inclusion of statistical spread is required for timing and parameter verification. The simulation of complex circuits combined with the consideration of timing jitter effects is a very challenging task for both transient simulation on the electrical network level and simulation with hardware description languages. In this paper, a new approach based on discrete-event simulations is presented. By this method, the pulse-driven characteristics of RSFQ circuits can be directly transferred into a model describing the behavior on the transaction level. The realized models of basic RSFQ cells include stochastic timing effects. This approach is demonstrated by modeling a nontrivial cell and compared against the conventional transient simulation concerning the accuracy of the results and the computation time. |
doi_str_mv | 10.1109/TASC.2013.2266403 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671529084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6585789</ieee_id><sourcerecordid>1671529084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-bb8cdb946712d2afaae5a0793da89cd6bbd720d5f79f71138f8cf0f5453597343</originalsourceid><addsrcrecordid>eNpdkMtKAzEUhoMoWKsPIG4CbtxMzWUySZa1tF5QvLTiMmQmiabMpU5mRN_eDC0uXJ1z4Pt_Dh8ApxhNMEbycjVdziYEYTohJMtSRPfACDMmEsIw2487YjgRhNBDcBTCGiGcipSNwNP8y9ZdcqWDNfChMbb09TtsHHzRG2_gMl6lTRZl_w2fe113fQUj6ws4s2UZ4JvvPuDKV0PoznedbY_BgdNlsCe7OQavi_lqdpPcP17fzqb3SUG46JI8F4XJZZpxTAzRTmvLNOKSGi1kYbI8N5wgwxyXjmNMhROFQ46ljDLJaUrH4GLbu2mbz96GTlU-FPEpXdumDwrHZkYkEgN6_g9dN31bx-8UTjmlGGWcRApvqaJtQmitU5vWV7r9URipwbEaHKvBsdo5jpmzbcZba__4jAnGhaS_U4R2Sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1473310672</pqid></control><display><type>article</type><title>Event-Based Modeling of Rapid Single-Flux Quantum Basic Cells With Timing Jitter</title><source>IEEE Electronic Library (IEL)</source><creator>Wetzstein, Olaf ; Mueller, Marcus ; Pacholik, Alexander ; Ortlepp, Thomas ; Fengler, Wolfgang ; Meyer, Hans-Georg ; Toepfer, Hannes</creator><creatorcontrib>Wetzstein, Olaf ; Mueller, Marcus ; Pacholik, Alexander ; Ortlepp, Thomas ; Fengler, Wolfgang ; Meyer, Hans-Georg ; Toepfer, Hannes</creatorcontrib><description>The realizable integration level of rapid single-flux quantum (RSFQ) circuits has reached the order of magnitude of 20 000 Josephson junctions, which enables the creation of advanced complex circuits such as microprocessors or digital signal processors. During the design of those complex circuits, behavioral arrangement alone is insufficient; instead, the inclusion of statistical spread is required for timing and parameter verification. The simulation of complex circuits combined with the consideration of timing jitter effects is a very challenging task for both transient simulation on the electrical network level and simulation with hardware description languages. In this paper, a new approach based on discrete-event simulations is presented. By this method, the pulse-driven characteristics of RSFQ circuits can be directly transferred into a model describing the behavior on the transaction level. The realized models of basic RSFQ cells include stochastic timing effects. This approach is demonstrated by modeling a nontrivial cell and compared against the conventional transient simulation concerning the accuracy of the results and the computation time.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2013.2266403</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Behavior ; Circuits ; Computational modeling ; Computer simulation ; Delay effects ; Delays ; Digital signal processors ; Discrete-event simulation (DES) ; Finite element analysis ; Inclusions ; Integrated circuit modeling ; Jitter ; Mathematical models ; modeling ; Processors ; rapid single-flux quantum (RSFQ) ; Simulation ; Spreads ; Time measurements ; Timing jitter ; Transient analysis ; VHSIC hardware description language (VHDL)</subject><ispartof>IEEE transactions on applied superconductivity, 2013-10, Vol.23 (5), p.1301707-1301707</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c278t-bb8cdb946712d2afaae5a0793da89cd6bbd720d5f79f71138f8cf0f5453597343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6585789$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6585789$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wetzstein, Olaf</creatorcontrib><creatorcontrib>Mueller, Marcus</creatorcontrib><creatorcontrib>Pacholik, Alexander</creatorcontrib><creatorcontrib>Ortlepp, Thomas</creatorcontrib><creatorcontrib>Fengler, Wolfgang</creatorcontrib><creatorcontrib>Meyer, Hans-Georg</creatorcontrib><creatorcontrib>Toepfer, Hannes</creatorcontrib><title>Event-Based Modeling of Rapid Single-Flux Quantum Basic Cells With Timing Jitter</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The realizable integration level of rapid single-flux quantum (RSFQ) circuits has reached the order of magnitude of 20 000 Josephson junctions, which enables the creation of advanced complex circuits such as microprocessors or digital signal processors. During the design of those complex circuits, behavioral arrangement alone is insufficient; instead, the inclusion of statistical spread is required for timing and parameter verification. The simulation of complex circuits combined with the consideration of timing jitter effects is a very challenging task for both transient simulation on the electrical network level and simulation with hardware description languages. In this paper, a new approach based on discrete-event simulations is presented. By this method, the pulse-driven characteristics of RSFQ circuits can be directly transferred into a model describing the behavior on the transaction level. The realized models of basic RSFQ cells include stochastic timing effects. This approach is demonstrated by modeling a nontrivial cell and compared against the conventional transient simulation concerning the accuracy of the results and the computation time.</description><subject>Behavior</subject><subject>Circuits</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Delay effects</subject><subject>Delays</subject><subject>Digital signal processors</subject><subject>Discrete-event simulation (DES)</subject><subject>Finite element analysis</subject><subject>Inclusions</subject><subject>Integrated circuit modeling</subject><subject>Jitter</subject><subject>Mathematical models</subject><subject>modeling</subject><subject>Processors</subject><subject>rapid single-flux quantum (RSFQ)</subject><subject>Simulation</subject><subject>Spreads</subject><subject>Time measurements</subject><subject>Timing jitter</subject><subject>Transient analysis</subject><subject>VHSIC hardware description language (VHDL)</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtKAzEUhoMoWKsPIG4CbtxMzWUySZa1tF5QvLTiMmQmiabMpU5mRN_eDC0uXJ1z4Pt_Dh8ApxhNMEbycjVdziYEYTohJMtSRPfACDMmEsIw2487YjgRhNBDcBTCGiGcipSNwNP8y9ZdcqWDNfChMbb09TtsHHzRG2_gMl6lTRZl_w2fe113fQUj6ws4s2UZ4JvvPuDKV0PoznedbY_BgdNlsCe7OQavi_lqdpPcP17fzqb3SUG46JI8F4XJZZpxTAzRTmvLNOKSGi1kYbI8N5wgwxyXjmNMhROFQ46ljDLJaUrH4GLbu2mbz96GTlU-FPEpXdumDwrHZkYkEgN6_g9dN31bx-8UTjmlGGWcRApvqaJtQmitU5vWV7r9URipwbEaHKvBsdo5jpmzbcZba__4jAnGhaS_U4R2Sw</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Wetzstein, Olaf</creator><creator>Mueller, Marcus</creator><creator>Pacholik, Alexander</creator><creator>Ortlepp, Thomas</creator><creator>Fengler, Wolfgang</creator><creator>Meyer, Hans-Georg</creator><creator>Toepfer, Hannes</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20131001</creationdate><title>Event-Based Modeling of Rapid Single-Flux Quantum Basic Cells With Timing Jitter</title><author>Wetzstein, Olaf ; Mueller, Marcus ; Pacholik, Alexander ; Ortlepp, Thomas ; Fengler, Wolfgang ; Meyer, Hans-Georg ; Toepfer, Hannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-bb8cdb946712d2afaae5a0793da89cd6bbd720d5f79f71138f8cf0f5453597343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Behavior</topic><topic>Circuits</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Delay effects</topic><topic>Delays</topic><topic>Digital signal processors</topic><topic>Discrete-event simulation (DES)</topic><topic>Finite element analysis</topic><topic>Inclusions</topic><topic>Integrated circuit modeling</topic><topic>Jitter</topic><topic>Mathematical models</topic><topic>modeling</topic><topic>Processors</topic><topic>rapid single-flux quantum (RSFQ)</topic><topic>Simulation</topic><topic>Spreads</topic><topic>Time measurements</topic><topic>Timing jitter</topic><topic>Transient analysis</topic><topic>VHSIC hardware description language (VHDL)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wetzstein, Olaf</creatorcontrib><creatorcontrib>Mueller, Marcus</creatorcontrib><creatorcontrib>Pacholik, Alexander</creatorcontrib><creatorcontrib>Ortlepp, Thomas</creatorcontrib><creatorcontrib>Fengler, Wolfgang</creatorcontrib><creatorcontrib>Meyer, Hans-Georg</creatorcontrib><creatorcontrib>Toepfer, Hannes</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wetzstein, Olaf</au><au>Mueller, Marcus</au><au>Pacholik, Alexander</au><au>Ortlepp, Thomas</au><au>Fengler, Wolfgang</au><au>Meyer, Hans-Georg</au><au>Toepfer, Hannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Event-Based Modeling of Rapid Single-Flux Quantum Basic Cells With Timing Jitter</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2013-10-01</date><risdate>2013</risdate><volume>23</volume><issue>5</issue><spage>1301707</spage><epage>1301707</epage><pages>1301707-1301707</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The realizable integration level of rapid single-flux quantum (RSFQ) circuits has reached the order of magnitude of 20 000 Josephson junctions, which enables the creation of advanced complex circuits such as microprocessors or digital signal processors. During the design of those complex circuits, behavioral arrangement alone is insufficient; instead, the inclusion of statistical spread is required for timing and parameter verification. The simulation of complex circuits combined with the consideration of timing jitter effects is a very challenging task for both transient simulation on the electrical network level and simulation with hardware description languages. In this paper, a new approach based on discrete-event simulations is presented. By this method, the pulse-driven characteristics of RSFQ circuits can be directly transferred into a model describing the behavior on the transaction level. The realized models of basic RSFQ cells include stochastic timing effects. This approach is demonstrated by modeling a nontrivial cell and compared against the conventional transient simulation concerning the accuracy of the results and the computation time.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2013.2266403</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2013-10, Vol.23 (5), p.1301707-1301707 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671529084 |
source | IEEE Electronic Library (IEL) |
subjects | Behavior Circuits Computational modeling Computer simulation Delay effects Delays Digital signal processors Discrete-event simulation (DES) Finite element analysis Inclusions Integrated circuit modeling Jitter Mathematical models modeling Processors rapid single-flux quantum (RSFQ) Simulation Spreads Time measurements Timing jitter Transient analysis VHSIC hardware description language (VHDL) |
title | Event-Based Modeling of Rapid Single-Flux Quantum Basic Cells With Timing Jitter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A18%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Event-Based%20Modeling%20of%20Rapid%20Single-Flux%20Quantum%20Basic%20Cells%20With%20Timing%20Jitter&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Wetzstein,%20Olaf&rft.date=2013-10-01&rft.volume=23&rft.issue=5&rft.spage=1301707&rft.epage=1301707&rft.pages=1301707-1301707&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2013.2266403&rft_dat=%3Cproquest_RIE%3E1671529084%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1473310672&rft_id=info:pmid/&rft_ieee_id=6585789&rfr_iscdi=true |