Thermal Fluid-Solid Coupling Numerical Simulation in Ultra-Supercritical Steam Trap

Aiming at the strength destruction of high temperature and high pressure valve in the normal condition, an ultra-supercritical steam trap was taken as the research object, the fluid-solid-heat coupling simulation was carried, and the distributions of the fluid pressure and velocity were obtained, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2014-01, Vol.470 (Mechanical Engineering, Materials Science and Civil Engineering II), p.255-258
Hauptverfasser: Hu, Jian Hua, Li, Shu Xun, Ding, Qiang Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 258
container_issue Mechanical Engineering, Materials Science and Civil Engineering II
container_start_page 255
container_title Applied Mechanics and Materials
container_volume 470
creator Hu, Jian Hua
Li, Shu Xun
Ding, Qiang Wei
description Aiming at the strength destruction of high temperature and high pressure valve in the normal condition, an ultra-supercritical steam trap was taken as the research object, the fluid-solid-heat coupling simulation was carried, and the distributions of the fluid pressure and velocity were obtained, the distributions of the whole valve temperature field, the stress and deformation were also obtained. The results show that the valve will not produce cavitation after the depressurizing of multilevel sleeve step by step, and the flow rate is controlled; the maximum stress is found on the connection of the upper sleeve and the gland, the thermal stress values on the import and export of the valve are larger, and according to the stress classification and assessing criterion, they all meet the requirements of strength. It can provide reference for the design and optimization of the high temperature and high pressure valve.
doi_str_mv 10.4028/www.scientific.net/AMM.470.255
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671527081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671527081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-7f206ec2e2b8833af104ddb82b9f96031acd52f68689b1869dc3bcf00fed352e3</originalsourceid><addsrcrecordid>eNqNkclKBDEURYMDOPU_FAjipsoMVUlqI0rjBA6LbtchlUrsSGowSdH490ZbUFy5eot7uO_xDgAnCBYlxPxsvV4XQVndR2usKnodzy4fHoqSwQJX1RbYR5TinJUcb4NZzTiBhPGqpgjvfGUwrwmhe-AghFcIaYlKvg8Wy5X2nXTZtZtsmy8GZ9tsPkyjs_1L9jh12luV4oXtJiejHfrM9tmzi17mi2nUXnkbN0TUssuWXo5HYNdIF_Tsex6C5-ur5fw2v3-6uZtf3ueKYB5zZjCkWmGNG84JkQbBsm0bjpva1BQSJFVbYUM55XWDOK1bRRplIDS6JRXW5BCcbnpHP7xNOkTR2aC0c7LXwxQEogxVmEGOEnr8B30dJt-n6wQqKWMUV6xK1PmGUn4IwWsjRm876d8FguLTgUgOxI8DkRyI5EAkByI5SAUXm4L0nj5ErVa_9vyv4gOA4JYd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1467762575</pqid></control><display><type>article</type><title>Thermal Fluid-Solid Coupling Numerical Simulation in Ultra-Supercritical Steam Trap</title><source>Scientific.net Journals</source><creator>Hu, Jian Hua ; Li, Shu Xun ; Ding, Qiang Wei</creator><creatorcontrib>Hu, Jian Hua ; Li, Shu Xun ; Ding, Qiang Wei</creatorcontrib><description>Aiming at the strength destruction of high temperature and high pressure valve in the normal condition, an ultra-supercritical steam trap was taken as the research object, the fluid-solid-heat coupling simulation was carried, and the distributions of the fluid pressure and velocity were obtained, the distributions of the whole valve temperature field, the stress and deformation were also obtained. The results show that the valve will not produce cavitation after the depressurizing of multilevel sleeve step by step, and the flow rate is controlled; the maximum stress is found on the connection of the upper sleeve and the gland, the thermal stress values on the import and export of the valve are larger, and according to the stress classification and assessing criterion, they all meet the requirements of strength. It can provide reference for the design and optimization of the high temperature and high pressure valve.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783037859612</identifier><identifier>ISBN: 303785961X</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.470.255</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Computer simulation ; Joining ; Sleeves ; Steam traps ; Strength ; Stress concentration ; Stresses ; Valves</subject><ispartof>Applied Mechanics and Materials, 2014-01, Vol.470 (Mechanical Engineering, Materials Science and Civil Engineering II), p.255-258</ispartof><rights>2014 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c328t-7f206ec2e2b8833af104ddb82b9f96031acd52f68689b1869dc3bcf00fed352e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2890?width=600</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Hu, Jian Hua</creatorcontrib><creatorcontrib>Li, Shu Xun</creatorcontrib><creatorcontrib>Ding, Qiang Wei</creatorcontrib><title>Thermal Fluid-Solid Coupling Numerical Simulation in Ultra-Supercritical Steam Trap</title><title>Applied Mechanics and Materials</title><description>Aiming at the strength destruction of high temperature and high pressure valve in the normal condition, an ultra-supercritical steam trap was taken as the research object, the fluid-solid-heat coupling simulation was carried, and the distributions of the fluid pressure and velocity were obtained, the distributions of the whole valve temperature field, the stress and deformation were also obtained. The results show that the valve will not produce cavitation after the depressurizing of multilevel sleeve step by step, and the flow rate is controlled; the maximum stress is found on the connection of the upper sleeve and the gland, the thermal stress values on the import and export of the valve are larger, and according to the stress classification and assessing criterion, they all meet the requirements of strength. It can provide reference for the design and optimization of the high temperature and high pressure valve.</description><subject>Computer simulation</subject><subject>Joining</subject><subject>Sleeves</subject><subject>Steam traps</subject><subject>Strength</subject><subject>Stress concentration</subject><subject>Stresses</subject><subject>Valves</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783037859612</isbn><isbn>303785961X</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkclKBDEURYMDOPU_FAjipsoMVUlqI0rjBA6LbtchlUrsSGowSdH490ZbUFy5eot7uO_xDgAnCBYlxPxsvV4XQVndR2usKnodzy4fHoqSwQJX1RbYR5TinJUcb4NZzTiBhPGqpgjvfGUwrwmhe-AghFcIaYlKvg8Wy5X2nXTZtZtsmy8GZ9tsPkyjs_1L9jh12luV4oXtJiejHfrM9tmzi17mi2nUXnkbN0TUssuWXo5HYNdIF_Tsex6C5-ur5fw2v3-6uZtf3ueKYB5zZjCkWmGNG84JkQbBsm0bjpva1BQSJFVbYUM55XWDOK1bRRplIDS6JRXW5BCcbnpHP7xNOkTR2aC0c7LXwxQEogxVmEGOEnr8B30dJt-n6wQqKWMUV6xK1PmGUn4IwWsjRm876d8FguLTgUgOxI8DkRyI5EAkByI5SAUXm4L0nj5ErVa_9vyv4gOA4JYd</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Hu, Jian Hua</creator><creator>Li, Shu Xun</creator><creator>Ding, Qiang Wei</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140101</creationdate><title>Thermal Fluid-Solid Coupling Numerical Simulation in Ultra-Supercritical Steam Trap</title><author>Hu, Jian Hua ; Li, Shu Xun ; Ding, Qiang Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-7f206ec2e2b8833af104ddb82b9f96031acd52f68689b1869dc3bcf00fed352e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computer simulation</topic><topic>Joining</topic><topic>Sleeves</topic><topic>Steam traps</topic><topic>Strength</topic><topic>Stress concentration</topic><topic>Stresses</topic><topic>Valves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Jian Hua</creatorcontrib><creatorcontrib>Li, Shu Xun</creatorcontrib><creatorcontrib>Ding, Qiang Wei</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Jian Hua</au><au>Li, Shu Xun</au><au>Ding, Qiang Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Fluid-Solid Coupling Numerical Simulation in Ultra-Supercritical Steam Trap</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>470</volume><issue>Mechanical Engineering, Materials Science and Civil Engineering II</issue><spage>255</spage><epage>258</epage><pages>255-258</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783037859612</isbn><isbn>303785961X</isbn><abstract>Aiming at the strength destruction of high temperature and high pressure valve in the normal condition, an ultra-supercritical steam trap was taken as the research object, the fluid-solid-heat coupling simulation was carried, and the distributions of the fluid pressure and velocity were obtained, the distributions of the whole valve temperature field, the stress and deformation were also obtained. The results show that the valve will not produce cavitation after the depressurizing of multilevel sleeve step by step, and the flow rate is controlled; the maximum stress is found on the connection of the upper sleeve and the gland, the thermal stress values on the import and export of the valve are larger, and according to the stress classification and assessing criterion, they all meet the requirements of strength. It can provide reference for the design and optimization of the high temperature and high pressure valve.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.470.255</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2014-01, Vol.470 (Mechanical Engineering, Materials Science and Civil Engineering II), p.255-258
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_miscellaneous_1671527081
source Scientific.net Journals
subjects Computer simulation
Joining
Sleeves
Steam traps
Strength
Stress concentration
Stresses
Valves
title Thermal Fluid-Solid Coupling Numerical Simulation in Ultra-Supercritical Steam Trap
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A52%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Fluid-Solid%20Coupling%20Numerical%20Simulation%20in%20Ultra-Supercritical%20Steam%20Trap&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Hu,%20Jian%20Hua&rft.date=2014-01-01&rft.volume=470&rft.issue=Mechanical%20Engineering,%20Materials%20Science%20and%20Civil%20Engineering%20II&rft.spage=255&rft.epage=258&rft.pages=255-258&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783037859612&rft.isbn_list=303785961X&rft_id=info:doi/10.4028/www.scientific.net/AMM.470.255&rft_dat=%3Cproquest_cross%3E1671527081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1467762575&rft_id=info:pmid/&rfr_iscdi=true