Maximizing the Total Resolution of Graphs

A major factor affecting the readability of a graph drawing is its resolution. In the graph drawing literature, the resolution of a drawing is either measured based on the angles formed by consecutive edges incident on a common vertex (angular resolution) or by the angles formed at edge crossings (c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer journal 2013-07, Vol.56 (7), p.887-900
Hauptverfasser: Argyriou, EN, Bekos, MA, Symvonis, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 900
container_issue 7
container_start_page 887
container_title Computer journal
container_volume 56
creator Argyriou, EN
Bekos, MA
Symvonis, A
description A major factor affecting the readability of a graph drawing is its resolution. In the graph drawing literature, the resolution of a drawing is either measured based on the angles formed by consecutive edges incident on a common vertex (angular resolution) or by the angles formed at edge crossings (crossing resolution). In this paper, we introduce the notion of 'total resolution', that is, the minimum of the angular and crossing resolution. To the best of our knowledge, this is the first time where the problem of maximizing the total resolution of a graph over all its drawings is studied. The main contribution of the paper consists of drawings of asymptotically optimal total resolution for complete graphs (circular drawings) and for complete bipartite graphs (two-layered drawings). In addition, we present and experimentally evaluate a force-directed-based algorithm that constructs drawings of large total resolution.
doi_str_mv 10.1093/comjnl/bxs088
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671526698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671526698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-c5faec43079d6f91ee4a35db43e1b2567eb38e98ac6bc8ad6a5cb90509e363323</originalsourceid><addsrcrecordid>eNqF0E1Lw0AQgOFFFKzVo_eAFz3Ezn5Ndo9StAoVQeo5bDYbm5Jk624C1V9vJJ68eJrLwwzzEnJJ4ZaC5gvr213XLIpDBKWOyIwKhJQBZsdkBkAhFcjglJzFuAMABhpn5ObZHOq2_qq796TfumTje9Mkry76Zuhr3yW-SlbB7LfxnJxUponu4nfOydvD_Wb5mK5fVk_Lu3VqeQZ9amVlnBUcMl1ipalzwnBZFoI7WjCJmSu4cloZi4VVpkQjbaFBgnYcOWd8Tq6nvfvgPwYX-7yto3VNYzrnh5hTzKhkiFr9TwUKOZ6kdKRXf-jOD6EbHxkVU5wqBBhVOikbfIzBVfk-1K0JnzmF_KdxPjXOp8b8G7P0b44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1428318600</pqid></control><display><type>article</type><title>Maximizing the Total Resolution of Graphs</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Argyriou, EN ; Bekos, MA ; Symvonis, A</creator><creatorcontrib>Argyriou, EN ; Bekos, MA ; Symvonis, A</creatorcontrib><description>A major factor affecting the readability of a graph drawing is its resolution. In the graph drawing literature, the resolution of a drawing is either measured based on the angles formed by consecutive edges incident on a common vertex (angular resolution) or by the angles formed at edge crossings (crossing resolution). In this paper, we introduce the notion of 'total resolution', that is, the minimum of the angular and crossing resolution. To the best of our knowledge, this is the first time where the problem of maximizing the total resolution of a graph over all its drawings is studied. The main contribution of the paper consists of drawings of asymptotically optimal total resolution for complete graphs (circular drawings) and for complete bipartite graphs (two-layered drawings). In addition, we present and experimentally evaluate a force-directed-based algorithm that constructs drawings of large total resolution.</description><identifier>ISSN: 0010-4620</identifier><identifier>EISSN: 1460-2067</identifier><identifier>DOI: 10.1093/comjnl/bxs088</identifier><identifier>CODEN: CMPJAG</identifier><language>eng</language><publisher>Oxford: Oxford Publishing Limited (England)</publisher><subject>Algorithms ; Angular resolution ; Asymptotic properties ; Computer science ; Construction ; Graph algorithms ; Graph representations ; Graphs ; Optimization</subject><ispartof>Computer journal, 2013-07, Vol.56 (7), p.887-900</ispartof><rights>Copyright Oxford Publishing Limited(England) Jul 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-c5faec43079d6f91ee4a35db43e1b2567eb38e98ac6bc8ad6a5cb90509e363323</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Argyriou, EN</creatorcontrib><creatorcontrib>Bekos, MA</creatorcontrib><creatorcontrib>Symvonis, A</creatorcontrib><title>Maximizing the Total Resolution of Graphs</title><title>Computer journal</title><description>A major factor affecting the readability of a graph drawing is its resolution. In the graph drawing literature, the resolution of a drawing is either measured based on the angles formed by consecutive edges incident on a common vertex (angular resolution) or by the angles formed at edge crossings (crossing resolution). In this paper, we introduce the notion of 'total resolution', that is, the minimum of the angular and crossing resolution. To the best of our knowledge, this is the first time where the problem of maximizing the total resolution of a graph over all its drawings is studied. The main contribution of the paper consists of drawings of asymptotically optimal total resolution for complete graphs (circular drawings) and for complete bipartite graphs (two-layered drawings). In addition, we present and experimentally evaluate a force-directed-based algorithm that constructs drawings of large total resolution.</description><subject>Algorithms</subject><subject>Angular resolution</subject><subject>Asymptotic properties</subject><subject>Computer science</subject><subject>Construction</subject><subject>Graph algorithms</subject><subject>Graph representations</subject><subject>Graphs</subject><subject>Optimization</subject><issn>0010-4620</issn><issn>1460-2067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0E1Lw0AQgOFFFKzVo_eAFz3Ezn5Ndo9StAoVQeo5bDYbm5Jk624C1V9vJJ68eJrLwwzzEnJJ4ZaC5gvr213XLIpDBKWOyIwKhJQBZsdkBkAhFcjglJzFuAMABhpn5ObZHOq2_qq796TfumTje9Mkry76Zuhr3yW-SlbB7LfxnJxUponu4nfOydvD_Wb5mK5fVk_Lu3VqeQZ9amVlnBUcMl1ipalzwnBZFoI7WjCJmSu4cloZi4VVpkQjbaFBgnYcOWd8Tq6nvfvgPwYX-7yto3VNYzrnh5hTzKhkiFr9TwUKOZ6kdKRXf-jOD6EbHxkVU5wqBBhVOikbfIzBVfk-1K0JnzmF_KdxPjXOp8b8G7P0b44</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Argyriou, EN</creator><creator>Bekos, MA</creator><creator>Symvonis, A</creator><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130701</creationdate><title>Maximizing the Total Resolution of Graphs</title><author>Argyriou, EN ; Bekos, MA ; Symvonis, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-c5faec43079d6f91ee4a35db43e1b2567eb38e98ac6bc8ad6a5cb90509e363323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Angular resolution</topic><topic>Asymptotic properties</topic><topic>Computer science</topic><topic>Construction</topic><topic>Graph algorithms</topic><topic>Graph representations</topic><topic>Graphs</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Argyriou, EN</creatorcontrib><creatorcontrib>Bekos, MA</creatorcontrib><creatorcontrib>Symvonis, A</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Argyriou, EN</au><au>Bekos, MA</au><au>Symvonis, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximizing the Total Resolution of Graphs</atitle><jtitle>Computer journal</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>56</volume><issue>7</issue><spage>887</spage><epage>900</epage><pages>887-900</pages><issn>0010-4620</issn><eissn>1460-2067</eissn><coden>CMPJAG</coden><abstract>A major factor affecting the readability of a graph drawing is its resolution. In the graph drawing literature, the resolution of a drawing is either measured based on the angles formed by consecutive edges incident on a common vertex (angular resolution) or by the angles formed at edge crossings (crossing resolution). In this paper, we introduce the notion of 'total resolution', that is, the minimum of the angular and crossing resolution. To the best of our knowledge, this is the first time where the problem of maximizing the total resolution of a graph over all its drawings is studied. The main contribution of the paper consists of drawings of asymptotically optimal total resolution for complete graphs (circular drawings) and for complete bipartite graphs (two-layered drawings). In addition, we present and experimentally evaluate a force-directed-based algorithm that constructs drawings of large total resolution.</abstract><cop>Oxford</cop><pub>Oxford Publishing Limited (England)</pub><doi>10.1093/comjnl/bxs088</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-4620
ispartof Computer journal, 2013-07, Vol.56 (7), p.887-900
issn 0010-4620
1460-2067
language eng
recordid cdi_proquest_miscellaneous_1671526698
source Oxford University Press Journals All Titles (1996-Current)
subjects Algorithms
Angular resolution
Asymptotic properties
Computer science
Construction
Graph algorithms
Graph representations
Graphs
Optimization
title Maximizing the Total Resolution of Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A28%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximizing%20the%20Total%20Resolution%20of%20Graphs&rft.jtitle=Computer%20journal&rft.au=Argyriou,%20EN&rft.date=2013-07-01&rft.volume=56&rft.issue=7&rft.spage=887&rft.epage=900&rft.pages=887-900&rft.issn=0010-4620&rft.eissn=1460-2067&rft.coden=CMPJAG&rft_id=info:doi/10.1093/comjnl/bxs088&rft_dat=%3Cproquest_cross%3E1671526698%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1428318600&rft_id=info:pmid/&rfr_iscdi=true