Influences of different forces on the bubble entrainment into a stationary Gaussian vortex
Simulations of bubble entrainment into a stationary Gaussian vortex are performed by using the combined particle tracking method(PTM) and boundary element method(BEM). Before the bubble is captured by the vortex core, oscillation and migration of the quasi-spherical nucleus are solved by using impro...
Gespeichert in:
Veröffentlicht in: | Science China. Physics, mechanics & astronomy mechanics & astronomy, 2013-11, Vol.56 (11), p.2162-2169 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2169 |
---|---|
container_issue | 11 |
container_start_page | 2162 |
container_title | Science China. Physics, mechanics & astronomy |
container_volume | 56 |
creator | Zhang, AMan Ni, BaoYu |
description | Simulations of bubble entrainment into a stationary Gaussian vortex are performed by using the combined particle tracking method(PTM) and boundary element method(BEM). Before the bubble is captured by the vortex core, oscillation and migration of the quasi-spherical nucleus are solved by using improved RP equation and the momentum theorem in the Lagrangian reference frame simultaneously, and the trajectory of the nucleus presents a kind of reduced helix shape. After captured by the vortex core, the bubble grows immediately and moves and deforms along the vortex core axis. The non-spherical evolution and deformation of the bubble is simulated by adopting a mixed Eulerian-Lagrangian method. The output of quasi-spherical stage is taken as the input of non-spherical stage, and all the behaviors of the entrained bubble can be simulated such as inception,motion, deformation and split. Numerical results agree well with published experimental data. On this basis, the influences of various factors such as viscosity, surface tension, buoyancy are studied systemically. Hopefully the results from this paper would provide some insight into the control on vortex bubble entrainment. |
doi_str_mv | 10.1007/s11433-013-5267-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671525243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>47643327</cqvip_id><sourcerecordid>1529945350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-109146a77339d8f7c9d727765159857555fb18c6a8bc1864dc2ee2f39734306e3</originalsourceid><addsrcrecordid>eNqNkTtLBDEUhQdRUNQfYBexsRnNzetOShEfC4KNNjYhM5voyGyiyYzovzfrioKFbJqE5Dv35p5TVQdAT4BSPM0AgvOaAq8lU1izjWoHGqVr0Aw3y1mhqJGLZrvaz_mZlsU1FSh2qodZ8MPkQucyiZ7Me-9dcmEkPqavu0DGJ0faqW0HR8pDsn1YLIE-jJFYkkc79jHY9EGu7JRzbwN5i2l073vVlrdDdvvf-251f3lxd35d39xezc7Pbuqu_GCsgWoQyiJyrueNx07PkSEqCVI3EqWUvoWmU7ZpuzKUmHfMOea5LgNxqhzfrY5XdV9SfJ1cHs2iz50bBhtcnLIp04NkkhWL1kIBmnVQybQWkku6BkoVR6SSFfToD_ocpxSKPYZpaKQQTOpCwYrqUsw5OW9eUr8oFhugZpm4WSVuSuJmmbhZVmYrTS5seHTpt_J_osPvRk8xPL4W3U8ngarADPknMlG18Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918544259</pqid></control><display><type>article</type><title>Influences of different forces on the bubble entrainment into a stationary Gaussian vortex</title><source>Springer Online Journals</source><source>Alma/SFX Local Collection</source><creator>Zhang, AMan ; Ni, BaoYu</creator><creatorcontrib>Zhang, AMan ; Ni, BaoYu</creatorcontrib><description>Simulations of bubble entrainment into a stationary Gaussian vortex are performed by using the combined particle tracking method(PTM) and boundary element method(BEM). Before the bubble is captured by the vortex core, oscillation and migration of the quasi-spherical nucleus are solved by using improved RP equation and the momentum theorem in the Lagrangian reference frame simultaneously, and the trajectory of the nucleus presents a kind of reduced helix shape. After captured by the vortex core, the bubble grows immediately and moves and deforms along the vortex core axis. The non-spherical evolution and deformation of the bubble is simulated by adopting a mixed Eulerian-Lagrangian method. The output of quasi-spherical stage is taken as the input of non-spherical stage, and all the behaviors of the entrained bubble can be simulated such as inception,motion, deformation and split. Numerical results agree well with published experimental data. On this basis, the influences of various factors such as viscosity, surface tension, buoyancy are studied systemically. Hopefully the results from this paper would provide some insight into the control on vortex bubble entrainment.</description><identifier>ISSN: 1674-7348</identifier><identifier>EISSN: 1869-1927</identifier><identifier>DOI: 10.1007/s11433-013-5267-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Astronomy ; Boundary element method ; Bubbles ; Classical and Continuum Physics ; Computer simulation ; Deformation ; Entrainment ; Fluid flow ; Mathematical analysis ; Nuclei ; Observations and Techniques ; Particle tracking ; Physics ; Physics and Astronomy ; Simulation ; Surface tension ; Vortices ; 势力 ; 夹带 ; 拉格朗日方法 ; 泡沫 ; 涡旋 ; 轴变形 ; 边界元法 ; 高斯</subject><ispartof>Science China. Physics, mechanics & astronomy, 2013-11, Vol.56 (11), p.2162-2169</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2013</rights><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-109146a77339d8f7c9d727765159857555fb18c6a8bc1864dc2ee2f39734306e3</citedby><cites>FETCH-LOGICAL-c474t-109146a77339d8f7c9d727765159857555fb18c6a8bc1864dc2ee2f39734306e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60109X/60109X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11433-013-5267-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11433-013-5267-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Zhang, AMan</creatorcontrib><creatorcontrib>Ni, BaoYu</creatorcontrib><title>Influences of different forces on the bubble entrainment into a stationary Gaussian vortex</title><title>Science China. Physics, mechanics & astronomy</title><addtitle>Sci. China Phys. Mech. Astron</addtitle><addtitle>SCIENCE CHINA Physics, Mechanics & Astronomy</addtitle><description>Simulations of bubble entrainment into a stationary Gaussian vortex are performed by using the combined particle tracking method(PTM) and boundary element method(BEM). Before the bubble is captured by the vortex core, oscillation and migration of the quasi-spherical nucleus are solved by using improved RP equation and the momentum theorem in the Lagrangian reference frame simultaneously, and the trajectory of the nucleus presents a kind of reduced helix shape. After captured by the vortex core, the bubble grows immediately and moves and deforms along the vortex core axis. The non-spherical evolution and deformation of the bubble is simulated by adopting a mixed Eulerian-Lagrangian method. The output of quasi-spherical stage is taken as the input of non-spherical stage, and all the behaviors of the entrained bubble can be simulated such as inception,motion, deformation and split. Numerical results agree well with published experimental data. On this basis, the influences of various factors such as viscosity, surface tension, buoyancy are studied systemically. Hopefully the results from this paper would provide some insight into the control on vortex bubble entrainment.</description><subject>Astronomy</subject><subject>Boundary element method</subject><subject>Bubbles</subject><subject>Classical and Continuum Physics</subject><subject>Computer simulation</subject><subject>Deformation</subject><subject>Entrainment</subject><subject>Fluid flow</subject><subject>Mathematical analysis</subject><subject>Nuclei</subject><subject>Observations and Techniques</subject><subject>Particle tracking</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Simulation</subject><subject>Surface tension</subject><subject>Vortices</subject><subject>势力</subject><subject>夹带</subject><subject>拉格朗日方法</subject><subject>泡沫</subject><subject>涡旋</subject><subject>轴变形</subject><subject>边界元法</subject><subject>高斯</subject><issn>1674-7348</issn><issn>1869-1927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkTtLBDEUhQdRUNQfYBexsRnNzetOShEfC4KNNjYhM5voyGyiyYzovzfrioKFbJqE5Dv35p5TVQdAT4BSPM0AgvOaAq8lU1izjWoHGqVr0Aw3y1mhqJGLZrvaz_mZlsU1FSh2qodZ8MPkQucyiZ7Me-9dcmEkPqavu0DGJ0faqW0HR8pDsn1YLIE-jJFYkkc79jHY9EGu7JRzbwN5i2l073vVlrdDdvvf-251f3lxd35d39xezc7Pbuqu_GCsgWoQyiJyrueNx07PkSEqCVI3EqWUvoWmU7ZpuzKUmHfMOea5LgNxqhzfrY5XdV9SfJ1cHs2iz50bBhtcnLIp04NkkhWL1kIBmnVQybQWkku6BkoVR6SSFfToD_ocpxSKPYZpaKQQTOpCwYrqUsw5OW9eUr8oFhugZpm4WSVuSuJmmbhZVmYrTS5seHTpt_J_osPvRk8xPL4W3U8ngarADPknMlG18Q</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Zhang, AMan</creator><creator>Ni, BaoYu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7TG</scope><scope>KL.</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20131101</creationdate><title>Influences of different forces on the bubble entrainment into a stationary Gaussian vortex</title><author>Zhang, AMan ; Ni, BaoYu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-109146a77339d8f7c9d727765159857555fb18c6a8bc1864dc2ee2f39734306e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Astronomy</topic><topic>Boundary element method</topic><topic>Bubbles</topic><topic>Classical and Continuum Physics</topic><topic>Computer simulation</topic><topic>Deformation</topic><topic>Entrainment</topic><topic>Fluid flow</topic><topic>Mathematical analysis</topic><topic>Nuclei</topic><topic>Observations and Techniques</topic><topic>Particle tracking</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Simulation</topic><topic>Surface tension</topic><topic>Vortices</topic><topic>势力</topic><topic>夹带</topic><topic>拉格朗日方法</topic><topic>泡沫</topic><topic>涡旋</topic><topic>轴变形</topic><topic>边界元法</topic><topic>高斯</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, AMan</creatorcontrib><creatorcontrib>Ni, BaoYu</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Science China. Physics, mechanics & astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, AMan</au><au>Ni, BaoYu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influences of different forces on the bubble entrainment into a stationary Gaussian vortex</atitle><jtitle>Science China. Physics, mechanics & astronomy</jtitle><stitle>Sci. China Phys. Mech. Astron</stitle><addtitle>SCIENCE CHINA Physics, Mechanics & Astronomy</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>56</volume><issue>11</issue><spage>2162</spage><epage>2169</epage><pages>2162-2169</pages><issn>1674-7348</issn><eissn>1869-1927</eissn><abstract>Simulations of bubble entrainment into a stationary Gaussian vortex are performed by using the combined particle tracking method(PTM) and boundary element method(BEM). Before the bubble is captured by the vortex core, oscillation and migration of the quasi-spherical nucleus are solved by using improved RP equation and the momentum theorem in the Lagrangian reference frame simultaneously, and the trajectory of the nucleus presents a kind of reduced helix shape. After captured by the vortex core, the bubble grows immediately and moves and deforms along the vortex core axis. The non-spherical evolution and deformation of the bubble is simulated by adopting a mixed Eulerian-Lagrangian method. The output of quasi-spherical stage is taken as the input of non-spherical stage, and all the behaviors of the entrained bubble can be simulated such as inception,motion, deformation and split. Numerical results agree well with published experimental data. On this basis, the influences of various factors such as viscosity, surface tension, buoyancy are studied systemically. Hopefully the results from this paper would provide some insight into the control on vortex bubble entrainment.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11433-013-5267-2</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7348 |
ispartof | Science China. Physics, mechanics & astronomy, 2013-11, Vol.56 (11), p.2162-2169 |
issn | 1674-7348 1869-1927 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671525243 |
source | Springer Online Journals; Alma/SFX Local Collection |
subjects | Astronomy Boundary element method Bubbles Classical and Continuum Physics Computer simulation Deformation Entrainment Fluid flow Mathematical analysis Nuclei Observations and Techniques Particle tracking Physics Physics and Astronomy Simulation Surface tension Vortices 势力 夹带 拉格朗日方法 泡沫 涡旋 轴变形 边界元法 高斯 |
title | Influences of different forces on the bubble entrainment into a stationary Gaussian vortex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T21%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influences%20of%20different%20forces%20on%20the%20bubble%20entrainment%20into%20a%20stationary%20Gaussian%20vortex&rft.jtitle=Science%20China.%20Physics,%20mechanics%20&%20astronomy&rft.au=Zhang,%20AMan&rft.date=2013-11-01&rft.volume=56&rft.issue=11&rft.spage=2162&rft.epage=2169&rft.pages=2162-2169&rft.issn=1674-7348&rft.eissn=1869-1927&rft_id=info:doi/10.1007/s11433-013-5267-2&rft_dat=%3Cproquest_cross%3E1529945350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918544259&rft_id=info:pmid/&rft_cqvip_id=47643327&rfr_iscdi=true |