Soft-sensing Design Based on Semiclosed-loop Framework

Soft-sensing is widely used in industrial applications. The traditional soft-sensing structure is open-loop without correction mechanism. If the working condition is changed or there is unknown disturbance, the forecast result of soft-sensing model may be incorrect. In order to obtain accurate value...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of chemical engineering 2012-12, Vol.20 (6), p.1213-1218
1. Verfasser: 汤奇峰 李德伟 席裕庚 尹德斌
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1218
container_issue 6
container_start_page 1213
container_title Chinese journal of chemical engineering
container_volume 20
creator 汤奇峰 李德伟 席裕庚 尹德斌
description Soft-sensing is widely used in industrial applications. The traditional soft-sensing structure is open-loop without correction mechanism. If the working condition is changed or there is unknown disturbance, the forecast result of soft-sensing model may be incorrect. In order to obtain accurate values, it is necessary to carry out online correction. In this paper, a semiclosed-loop framework (SLF) is proposed to establish a soft-sensing approach, which estimates the input variables in the next moment by a prediction model and calibrates the output variables by a compensation model. The experimental results show that the proposed method has better prediction accuracy and robustness than other open-loop models.
doi_str_mv 10.1016/S1004-9541(12)60610-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671522273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>44358028</cqvip_id><els_id>S1004954112606107</els_id><sourcerecordid>1671522273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-810dbb4eecd1135b1cff5bd9ebea3f3db77a8484b30bbc2117bbbc1bcf99bd363</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QVhv9bCaSTb7cRKtVoWChyp4C5tktkZ3N22yVfz3bm3ptaeZgfeDeQg5B3oFFNLrGVCaxIVIYATsMqUp0Dg7IAPG-oUzeD8kg53kmJyE8EkpoznkA5LOXNXFAdtg23l0j8HO2-iuDGgi10YzbKyuXX_FtXOLaOLLBn-c_zolR1VZBzzbziF5mzy8jp_i6cvj8_h2GuuEQhfnQI1SCaI2AFwo0FUllClQYckrblSWlXmSJ4pTpTQDyFQ_QemqKJThKR-S0SZ34d1yhaGTjQ0a67ps0a2ChDQDwRjL-H6poCkvCs5ELxUbqfYuBI-VXHjblP5XApVrpPIfqVzzksDkP1KZ9b6bjQ_7l78tehm0xVajsR51J42zexMuts0frp0ve-a76iThIqcs538fnYi7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506399325</pqid></control><display><type>article</type><title>Soft-sensing Design Based on Semiclosed-loop Framework</title><source>Access via ScienceDirect (Elsevier)</source><source>Alma/SFX Local Collection</source><creator>汤奇峰 李德伟 席裕庚 尹德斌</creator><creatorcontrib>汤奇峰 李德伟 席裕庚 尹德斌</creatorcontrib><description>Soft-sensing is widely used in industrial applications. The traditional soft-sensing structure is open-loop without correction mechanism. If the working condition is changed or there is unknown disturbance, the forecast result of soft-sensing model may be incorrect. In order to obtain accurate values, it is necessary to carry out online correction. In this paper, a semiclosed-loop framework (SLF) is proposed to establish a soft-sensing approach, which estimates the input variables in the next moment by a prediction model and calibrates the output variables by a compensation model. The experimental results show that the proposed method has better prediction accuracy and robustness than other open-loop models.</description><identifier>ISSN: 1004-9541</identifier><identifier>EISSN: 2210-321X</identifier><identifier>DOI: 10.1016/S1004-9541(12)60610-7</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Calibration ; Chemical engineering ; Disturbances ; Estimates ; Mathematical models ; neural network ; On-line systems ; Online ; Robustness ; semiclosed-loop framework ; soft-sensing ; 半闭环 ; 开环模型 ; 控制框架 ; 测量基 ; 设计 ; 软测量方法 ; 软测量模型 ; 预测模型</subject><ispartof>Chinese journal of chemical engineering, 2012-12, Vol.20 (6), p.1213-1218</ispartof><rights>2012 Chemical Industry and Engineering Society of China (CIESC) and Chemical Industry Press (CIP)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-810dbb4eecd1135b1cff5bd9ebea3f3db77a8484b30bbc2117bbbc1bcf99bd363</citedby><cites>FETCH-LOGICAL-c401t-810dbb4eecd1135b1cff5bd9ebea3f3db77a8484b30bbc2117bbbc1bcf99bd363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84275X/84275X.jpg</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1004-9541(12)60610-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>汤奇峰 李德伟 席裕庚 尹德斌</creatorcontrib><title>Soft-sensing Design Based on Semiclosed-loop Framework</title><title>Chinese journal of chemical engineering</title><addtitle>Chinese Journal of Chemical Engineering</addtitle><description>Soft-sensing is widely used in industrial applications. The traditional soft-sensing structure is open-loop without correction mechanism. If the working condition is changed or there is unknown disturbance, the forecast result of soft-sensing model may be incorrect. In order to obtain accurate values, it is necessary to carry out online correction. In this paper, a semiclosed-loop framework (SLF) is proposed to establish a soft-sensing approach, which estimates the input variables in the next moment by a prediction model and calibrates the output variables by a compensation model. The experimental results show that the proposed method has better prediction accuracy and robustness than other open-loop models.</description><subject>Calibration</subject><subject>Chemical engineering</subject><subject>Disturbances</subject><subject>Estimates</subject><subject>Mathematical models</subject><subject>neural network</subject><subject>On-line systems</subject><subject>Online</subject><subject>Robustness</subject><subject>semiclosed-loop framework</subject><subject>soft-sensing</subject><subject>半闭环</subject><subject>开环模型</subject><subject>控制框架</subject><subject>测量基</subject><subject>设计</subject><subject>软测量方法</subject><subject>软测量模型</subject><subject>预测模型</subject><issn>1004-9541</issn><issn>2210-321X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QVhv9bCaSTb7cRKtVoWChyp4C5tktkZ3N22yVfz3bm3ptaeZgfeDeQg5B3oFFNLrGVCaxIVIYATsMqUp0Dg7IAPG-oUzeD8kg53kmJyE8EkpoznkA5LOXNXFAdtg23l0j8HO2-iuDGgi10YzbKyuXX_FtXOLaOLLBn-c_zolR1VZBzzbziF5mzy8jp_i6cvj8_h2GuuEQhfnQI1SCaI2AFwo0FUllClQYckrblSWlXmSJ4pTpTQDyFQ_QemqKJThKR-S0SZ34d1yhaGTjQ0a67ps0a2ChDQDwRjL-H6poCkvCs5ELxUbqfYuBI-VXHjblP5XApVrpPIfqVzzksDkP1KZ9b6bjQ_7l78tehm0xVajsR51J42zexMuts0frp0ve-a76iThIqcs538fnYi7</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>汤奇峰 李德伟 席裕庚 尹德斌</creator><general>Elsevier B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20121201</creationdate><title>Soft-sensing Design Based on Semiclosed-loop Framework</title><author>汤奇峰 李德伟 席裕庚 尹德斌</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-810dbb4eecd1135b1cff5bd9ebea3f3db77a8484b30bbc2117bbbc1bcf99bd363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Calibration</topic><topic>Chemical engineering</topic><topic>Disturbances</topic><topic>Estimates</topic><topic>Mathematical models</topic><topic>neural network</topic><topic>On-line systems</topic><topic>Online</topic><topic>Robustness</topic><topic>semiclosed-loop framework</topic><topic>soft-sensing</topic><topic>半闭环</topic><topic>开环模型</topic><topic>控制框架</topic><topic>测量基</topic><topic>设计</topic><topic>软测量方法</topic><topic>软测量模型</topic><topic>预测模型</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>汤奇峰 李德伟 席裕庚 尹德斌</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>汤奇峰 李德伟 席裕庚 尹德斌</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft-sensing Design Based on Semiclosed-loop Framework</atitle><jtitle>Chinese journal of chemical engineering</jtitle><addtitle>Chinese Journal of Chemical Engineering</addtitle><date>2012-12-01</date><risdate>2012</risdate><volume>20</volume><issue>6</issue><spage>1213</spage><epage>1218</epage><pages>1213-1218</pages><issn>1004-9541</issn><eissn>2210-321X</eissn><abstract>Soft-sensing is widely used in industrial applications. The traditional soft-sensing structure is open-loop without correction mechanism. If the working condition is changed or there is unknown disturbance, the forecast result of soft-sensing model may be incorrect. In order to obtain accurate values, it is necessary to carry out online correction. In this paper, a semiclosed-loop framework (SLF) is proposed to establish a soft-sensing approach, which estimates the input variables in the next moment by a prediction model and calibrates the output variables by a compensation model. The experimental results show that the proposed method has better prediction accuracy and robustness than other open-loop models.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S1004-9541(12)60610-7</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1004-9541
ispartof Chinese journal of chemical engineering, 2012-12, Vol.20 (6), p.1213-1218
issn 1004-9541
2210-321X
language eng
recordid cdi_proquest_miscellaneous_1671522273
source Access via ScienceDirect (Elsevier); Alma/SFX Local Collection
subjects Calibration
Chemical engineering
Disturbances
Estimates
Mathematical models
neural network
On-line systems
Online
Robustness
semiclosed-loop framework
soft-sensing
半闭环
开环模型
控制框架
测量基
设计
软测量方法
软测量模型
预测模型
title Soft-sensing Design Based on Semiclosed-loop Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A05%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft-sensing%20Design%20Based%20on%20Semiclosed-loop%20Framework&rft.jtitle=Chinese%20journal%20of%20chemical%20engineering&rft.au=%E6%B1%A4%E5%A5%87%E5%B3%B0%20%E6%9D%8E%E5%BE%B7%E4%BC%9F%20%E5%B8%AD%E8%A3%95%E5%BA%9A%20%E5%B0%B9%E5%BE%B7%E6%96%8C&rft.date=2012-12-01&rft.volume=20&rft.issue=6&rft.spage=1213&rft.epage=1218&rft.pages=1213-1218&rft.issn=1004-9541&rft.eissn=2210-321X&rft_id=info:doi/10.1016/S1004-9541(12)60610-7&rft_dat=%3Cproquest_cross%3E1671522273%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506399325&rft_id=info:pmid/&rft_cqvip_id=44358028&rft_els_id=S1004954112606107&rfr_iscdi=true