Nano Ag-enhanced energy conversion efficiency in standard commercial pc-Si solar cells and numerical simulations with finite difference time domain method

Nano Ag-enhanced energy conversion efficiency (ECE) in one standard commercial pc-Si solar cell utilizing the forward scattering by Ag nanoparticles on surface has been researched experimentally and simulatively in this paper. Directly assembling Ag nanoparticles (with size about 100 nm) on the surf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2013-11, Vol.103 (20), p.203904
Hauptverfasser: Yu, Jing, Shao Weijia, Zhou, Yao, Wang, Huijie, Liu, Xiao, Xu, Xiaoliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page 203904
container_title Applied physics letters
container_volume 103
creator Yu, Jing
Shao Weijia
Zhou, Yao
Wang, Huijie
Liu, Xiao
Xu, Xiaoliang
description Nano Ag-enhanced energy conversion efficiency (ECE) in one standard commercial pc-Si solar cell utilizing the forward scattering by Ag nanoparticles on surface has been researched experimentally and simulatively in this paper. Directly assembling Ag nanoparticles (with size about 100 nm) on the surface, it is found when the particle surface coverage is 10%, the ECE and the short circuit current density are increased by 2.8% and 1.4%, respectively. Without changing any existing structure of the ready-made solar cell, this facile and efficient method has huger applications than other methods.
doi_str_mv 10.1063/1.4830418
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671520291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671520291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-a5efd6626f65a6732c3cc80aa68c2a73fb42462c6491964cb36168f97211fec93</originalsourceid><addsrcrecordid>eNpdkc1KxTAQhYMoeL268A0CbnRRzSRt2i5F_APRhboucTrxRtrkmrTKfRWf1oiuXA2H-Tjzcxg7BHEKQqszOC0bJUpottgCRF0XCqDZZgshhCp0W8Eu20vpLctKKrVgX_fGB37-WpBfGY_Uc_IUXzccg_-gmFzwnKx16MjjhjvP02R8b2KfiXGkiM4MfI3Fo-MpDCZypGFIPDPcz7nvMPeTG-fBTNks8U83rbh13k3Ee2ctxexMfHJj1mE0ecRI0yr0-2zHmiHRwV9dsuery6eLm-Lu4fr24vyuQCWrqTAV2V5rqa2ujK6VRIXYCGN0g9LUyr6UstQSddlCq0t8URp0Y9taAljCVi3Z8a_vOob3mdLUjS79XGE8hTl1oGuopJAtZPToH_oW5ujzdp0E2VZCi_z-JTv5pTCGlCLZbh3daOKmA9H9pNRB95eS-gZLX4Xe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2129506048</pqid></control><display><type>article</type><title>Nano Ag-enhanced energy conversion efficiency in standard commercial pc-Si solar cells and numerical simulations with finite difference time domain method</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Yu, Jing ; Shao Weijia ; Zhou, Yao ; Wang, Huijie ; Liu, Xiao ; Xu, Xiaoliang</creator><creatorcontrib>Yu, Jing ; Shao Weijia ; Zhou, Yao ; Wang, Huijie ; Liu, Xiao ; Xu, Xiaoliang</creatorcontrib><description>Nano Ag-enhanced energy conversion efficiency (ECE) in one standard commercial pc-Si solar cell utilizing the forward scattering by Ag nanoparticles on surface has been researched experimentally and simulatively in this paper. Directly assembling Ag nanoparticles (with size about 100 nm) on the surface, it is found when the particle surface coverage is 10%, the ECE and the short circuit current density are increased by 2.8% and 1.4%, respectively. Without changing any existing structure of the ready-made solar cell, this facile and efficient method has huger applications than other methods.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4830418</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Circuits ; Computer simulation ; Density ; Energy conversion efficiency ; Finite difference time domain method ; Forward scattering ; Nanoparticles ; Nanostructure ; Photovoltaic cells ; Short circuit currents ; Silver ; Solar cells ; Time domain analysis</subject><ispartof>Applied physics letters, 2013-11, Vol.103 (20), p.203904</ispartof><rights>2013 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-a5efd6626f65a6732c3cc80aa68c2a73fb42462c6491964cb36168f97211fec93</citedby><cites>FETCH-LOGICAL-c325t-a5efd6626f65a6732c3cc80aa68c2a73fb42462c6491964cb36168f97211fec93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yu, Jing</creatorcontrib><creatorcontrib>Shao Weijia</creatorcontrib><creatorcontrib>Zhou, Yao</creatorcontrib><creatorcontrib>Wang, Huijie</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Xu, Xiaoliang</creatorcontrib><title>Nano Ag-enhanced energy conversion efficiency in standard commercial pc-Si solar cells and numerical simulations with finite difference time domain method</title><title>Applied physics letters</title><description>Nano Ag-enhanced energy conversion efficiency (ECE) in one standard commercial pc-Si solar cell utilizing the forward scattering by Ag nanoparticles on surface has been researched experimentally and simulatively in this paper. Directly assembling Ag nanoparticles (with size about 100 nm) on the surface, it is found when the particle surface coverage is 10%, the ECE and the short circuit current density are increased by 2.8% and 1.4%, respectively. Without changing any existing structure of the ready-made solar cell, this facile and efficient method has huger applications than other methods.</description><subject>Applied physics</subject><subject>Circuits</subject><subject>Computer simulation</subject><subject>Density</subject><subject>Energy conversion efficiency</subject><subject>Finite difference time domain method</subject><subject>Forward scattering</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Photovoltaic cells</subject><subject>Short circuit currents</subject><subject>Silver</subject><subject>Solar cells</subject><subject>Time domain analysis</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkc1KxTAQhYMoeL268A0CbnRRzSRt2i5F_APRhboucTrxRtrkmrTKfRWf1oiuXA2H-Tjzcxg7BHEKQqszOC0bJUpottgCRF0XCqDZZgshhCp0W8Eu20vpLctKKrVgX_fGB37-WpBfGY_Uc_IUXzccg_-gmFzwnKx16MjjhjvP02R8b2KfiXGkiM4MfI3Fo-MpDCZypGFIPDPcz7nvMPeTG-fBTNks8U83rbh13k3Ee2ctxexMfHJj1mE0ecRI0yr0-2zHmiHRwV9dsuery6eLm-Lu4fr24vyuQCWrqTAV2V5rqa2ujK6VRIXYCGN0g9LUyr6UstQSddlCq0t8URp0Y9taAljCVi3Z8a_vOob3mdLUjS79XGE8hTl1oGuopJAtZPToH_oW5ujzdp0E2VZCi_z-JTv5pTCGlCLZbh3daOKmA9H9pNRB95eS-gZLX4Xe</recordid><startdate>20131111</startdate><enddate>20131111</enddate><creator>Yu, Jing</creator><creator>Shao Weijia</creator><creator>Zhou, Yao</creator><creator>Wang, Huijie</creator><creator>Liu, Xiao</creator><creator>Xu, Xiaoliang</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>FR3</scope></search><sort><creationdate>20131111</creationdate><title>Nano Ag-enhanced energy conversion efficiency in standard commercial pc-Si solar cells and numerical simulations with finite difference time domain method</title><author>Yu, Jing ; Shao Weijia ; Zhou, Yao ; Wang, Huijie ; Liu, Xiao ; Xu, Xiaoliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-a5efd6626f65a6732c3cc80aa68c2a73fb42462c6491964cb36168f97211fec93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied physics</topic><topic>Circuits</topic><topic>Computer simulation</topic><topic>Density</topic><topic>Energy conversion efficiency</topic><topic>Finite difference time domain method</topic><topic>Forward scattering</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Photovoltaic cells</topic><topic>Short circuit currents</topic><topic>Silver</topic><topic>Solar cells</topic><topic>Time domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Jing</creatorcontrib><creatorcontrib>Shao Weijia</creatorcontrib><creatorcontrib>Zhou, Yao</creatorcontrib><creatorcontrib>Wang, Huijie</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Xu, Xiaoliang</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Engineering Research Database</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Jing</au><au>Shao Weijia</au><au>Zhou, Yao</au><au>Wang, Huijie</au><au>Liu, Xiao</au><au>Xu, Xiaoliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano Ag-enhanced energy conversion efficiency in standard commercial pc-Si solar cells and numerical simulations with finite difference time domain method</atitle><jtitle>Applied physics letters</jtitle><date>2013-11-11</date><risdate>2013</risdate><volume>103</volume><issue>20</issue><spage>203904</spage><pages>203904-</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Nano Ag-enhanced energy conversion efficiency (ECE) in one standard commercial pc-Si solar cell utilizing the forward scattering by Ag nanoparticles on surface has been researched experimentally and simulatively in this paper. Directly assembling Ag nanoparticles (with size about 100 nm) on the surface, it is found when the particle surface coverage is 10%, the ECE and the short circuit current density are increased by 2.8% and 1.4%, respectively. Without changing any existing structure of the ready-made solar cell, this facile and efficient method has huger applications than other methods.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4830418</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2013-11, Vol.103 (20), p.203904
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_miscellaneous_1671520291
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Applied physics
Circuits
Computer simulation
Density
Energy conversion efficiency
Finite difference time domain method
Forward scattering
Nanoparticles
Nanostructure
Photovoltaic cells
Short circuit currents
Silver
Solar cells
Time domain analysis
title Nano Ag-enhanced energy conversion efficiency in standard commercial pc-Si solar cells and numerical simulations with finite difference time domain method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano%20Ag-enhanced%20energy%20conversion%20efficiency%20in%20standard%20commercial%20pc-Si%20solar%20cells%20and%20numerical%20simulations%20with%20finite%20difference%20time%20domain%20method&rft.jtitle=Applied%20physics%20letters&rft.au=Yu,%20Jing&rft.date=2013-11-11&rft.volume=103&rft.issue=20&rft.spage=203904&rft.pages=203904-&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4830418&rft_dat=%3Cproquest_cross%3E1671520291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2129506048&rft_id=info:pmid/&rfr_iscdi=true