Nano Ag-enhanced energy conversion efficiency in standard commercial pc-Si solar cells and numerical simulations with finite difference time domain method
Nano Ag-enhanced energy conversion efficiency (ECE) in one standard commercial pc-Si solar cell utilizing the forward scattering by Ag nanoparticles on surface has been researched experimentally and simulatively in this paper. Directly assembling Ag nanoparticles (with size about 100 nm) on the surf...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2013-11, Vol.103 (20), p.203904 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | 203904 |
container_title | Applied physics letters |
container_volume | 103 |
creator | Yu, Jing Shao Weijia Zhou, Yao Wang, Huijie Liu, Xiao Xu, Xiaoliang |
description | Nano Ag-enhanced energy conversion efficiency (ECE) in one standard commercial pc-Si solar cell utilizing the forward scattering by Ag nanoparticles on surface has been researched experimentally and simulatively in this paper. Directly assembling Ag nanoparticles (with size about 100 nm) on the surface, it is found when the particle surface coverage is 10%, the ECE and the short circuit current density are increased by 2.8% and 1.4%, respectively. Without changing any existing structure of the ready-made solar cell, this facile and efficient method has huger applications than other methods. |
doi_str_mv | 10.1063/1.4830418 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671520291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671520291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-a5efd6626f65a6732c3cc80aa68c2a73fb42462c6491964cb36168f97211fec93</originalsourceid><addsrcrecordid>eNpdkc1KxTAQhYMoeL268A0CbnRRzSRt2i5F_APRhboucTrxRtrkmrTKfRWf1oiuXA2H-Tjzcxg7BHEKQqszOC0bJUpottgCRF0XCqDZZgshhCp0W8Eu20vpLctKKrVgX_fGB37-WpBfGY_Uc_IUXzccg_-gmFzwnKx16MjjhjvP02R8b2KfiXGkiM4MfI3Fo-MpDCZypGFIPDPcz7nvMPeTG-fBTNks8U83rbh13k3Ee2ctxexMfHJj1mE0ecRI0yr0-2zHmiHRwV9dsuery6eLm-Lu4fr24vyuQCWrqTAV2V5rqa2ujK6VRIXYCGN0g9LUyr6UstQSddlCq0t8URp0Y9taAljCVi3Z8a_vOob3mdLUjS79XGE8hTl1oGuopJAtZPToH_oW5ujzdp0E2VZCi_z-JTv5pTCGlCLZbh3daOKmA9H9pNRB95eS-gZLX4Xe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2129506048</pqid></control><display><type>article</type><title>Nano Ag-enhanced energy conversion efficiency in standard commercial pc-Si solar cells and numerical simulations with finite difference time domain method</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Yu, Jing ; Shao Weijia ; Zhou, Yao ; Wang, Huijie ; Liu, Xiao ; Xu, Xiaoliang</creator><creatorcontrib>Yu, Jing ; Shao Weijia ; Zhou, Yao ; Wang, Huijie ; Liu, Xiao ; Xu, Xiaoliang</creatorcontrib><description>Nano Ag-enhanced energy conversion efficiency (ECE) in one standard commercial pc-Si solar cell utilizing the forward scattering by Ag nanoparticles on surface has been researched experimentally and simulatively in this paper. Directly assembling Ag nanoparticles (with size about 100 nm) on the surface, it is found when the particle surface coverage is 10%, the ECE and the short circuit current density are increased by 2.8% and 1.4%, respectively. Without changing any existing structure of the ready-made solar cell, this facile and efficient method has huger applications than other methods.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4830418</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Circuits ; Computer simulation ; Density ; Energy conversion efficiency ; Finite difference time domain method ; Forward scattering ; Nanoparticles ; Nanostructure ; Photovoltaic cells ; Short circuit currents ; Silver ; Solar cells ; Time domain analysis</subject><ispartof>Applied physics letters, 2013-11, Vol.103 (20), p.203904</ispartof><rights>2013 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-a5efd6626f65a6732c3cc80aa68c2a73fb42462c6491964cb36168f97211fec93</citedby><cites>FETCH-LOGICAL-c325t-a5efd6626f65a6732c3cc80aa68c2a73fb42462c6491964cb36168f97211fec93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yu, Jing</creatorcontrib><creatorcontrib>Shao Weijia</creatorcontrib><creatorcontrib>Zhou, Yao</creatorcontrib><creatorcontrib>Wang, Huijie</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Xu, Xiaoliang</creatorcontrib><title>Nano Ag-enhanced energy conversion efficiency in standard commercial pc-Si solar cells and numerical simulations with finite difference time domain method</title><title>Applied physics letters</title><description>Nano Ag-enhanced energy conversion efficiency (ECE) in one standard commercial pc-Si solar cell utilizing the forward scattering by Ag nanoparticles on surface has been researched experimentally and simulatively in this paper. Directly assembling Ag nanoparticles (with size about 100 nm) on the surface, it is found when the particle surface coverage is 10%, the ECE and the short circuit current density are increased by 2.8% and 1.4%, respectively. Without changing any existing structure of the ready-made solar cell, this facile and efficient method has huger applications than other methods.</description><subject>Applied physics</subject><subject>Circuits</subject><subject>Computer simulation</subject><subject>Density</subject><subject>Energy conversion efficiency</subject><subject>Finite difference time domain method</subject><subject>Forward scattering</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Photovoltaic cells</subject><subject>Short circuit currents</subject><subject>Silver</subject><subject>Solar cells</subject><subject>Time domain analysis</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkc1KxTAQhYMoeL268A0CbnRRzSRt2i5F_APRhboucTrxRtrkmrTKfRWf1oiuXA2H-Tjzcxg7BHEKQqszOC0bJUpottgCRF0XCqDZZgshhCp0W8Eu20vpLctKKrVgX_fGB37-WpBfGY_Uc_IUXzccg_-gmFzwnKx16MjjhjvP02R8b2KfiXGkiM4MfI3Fo-MpDCZypGFIPDPcz7nvMPeTG-fBTNks8U83rbh13k3Ee2ctxexMfHJj1mE0ecRI0yr0-2zHmiHRwV9dsuery6eLm-Lu4fr24vyuQCWrqTAV2V5rqa2ujK6VRIXYCGN0g9LUyr6UstQSddlCq0t8URp0Y9taAljCVi3Z8a_vOob3mdLUjS79XGE8hTl1oGuopJAtZPToH_oW5ujzdp0E2VZCi_z-JTv5pTCGlCLZbh3daOKmA9H9pNRB95eS-gZLX4Xe</recordid><startdate>20131111</startdate><enddate>20131111</enddate><creator>Yu, Jing</creator><creator>Shao Weijia</creator><creator>Zhou, Yao</creator><creator>Wang, Huijie</creator><creator>Liu, Xiao</creator><creator>Xu, Xiaoliang</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>FR3</scope></search><sort><creationdate>20131111</creationdate><title>Nano Ag-enhanced energy conversion efficiency in standard commercial pc-Si solar cells and numerical simulations with finite difference time domain method</title><author>Yu, Jing ; Shao Weijia ; Zhou, Yao ; Wang, Huijie ; Liu, Xiao ; Xu, Xiaoliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-a5efd6626f65a6732c3cc80aa68c2a73fb42462c6491964cb36168f97211fec93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied physics</topic><topic>Circuits</topic><topic>Computer simulation</topic><topic>Density</topic><topic>Energy conversion efficiency</topic><topic>Finite difference time domain method</topic><topic>Forward scattering</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Photovoltaic cells</topic><topic>Short circuit currents</topic><topic>Silver</topic><topic>Solar cells</topic><topic>Time domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Jing</creatorcontrib><creatorcontrib>Shao Weijia</creatorcontrib><creatorcontrib>Zhou, Yao</creatorcontrib><creatorcontrib>Wang, Huijie</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Xu, Xiaoliang</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Engineering Research Database</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Jing</au><au>Shao Weijia</au><au>Zhou, Yao</au><au>Wang, Huijie</au><au>Liu, Xiao</au><au>Xu, Xiaoliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano Ag-enhanced energy conversion efficiency in standard commercial pc-Si solar cells and numerical simulations with finite difference time domain method</atitle><jtitle>Applied physics letters</jtitle><date>2013-11-11</date><risdate>2013</risdate><volume>103</volume><issue>20</issue><spage>203904</spage><pages>203904-</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Nano Ag-enhanced energy conversion efficiency (ECE) in one standard commercial pc-Si solar cell utilizing the forward scattering by Ag nanoparticles on surface has been researched experimentally and simulatively in this paper. Directly assembling Ag nanoparticles (with size about 100 nm) on the surface, it is found when the particle surface coverage is 10%, the ECE and the short circuit current density are increased by 2.8% and 1.4%, respectively. Without changing any existing structure of the ready-made solar cell, this facile and efficient method has huger applications than other methods.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4830418</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2013-11, Vol.103 (20), p.203904 |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671520291 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Applied physics Circuits Computer simulation Density Energy conversion efficiency Finite difference time domain method Forward scattering Nanoparticles Nanostructure Photovoltaic cells Short circuit currents Silver Solar cells Time domain analysis |
title | Nano Ag-enhanced energy conversion efficiency in standard commercial pc-Si solar cells and numerical simulations with finite difference time domain method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano%20Ag-enhanced%20energy%20conversion%20efficiency%20in%20standard%20commercial%20pc-Si%20solar%20cells%20and%20numerical%20simulations%20with%20finite%20difference%20time%20domain%20method&rft.jtitle=Applied%20physics%20letters&rft.au=Yu,%20Jing&rft.date=2013-11-11&rft.volume=103&rft.issue=20&rft.spage=203904&rft.pages=203904-&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4830418&rft_dat=%3Cproquest_cross%3E1671520291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2129506048&rft_id=info:pmid/&rfr_iscdi=true |