Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica
Thermogravimetric analysis is used to study the adsorption kinetics, equilibrium, and thermodynamics of CO2 on immobilized polyethylenimine sorbent impregnated on a mesoporous silica over the range of 300–390 K and 5–100% CO2 concentration. Adsorption isotherm models were fitted to the experimental...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2013-03, Vol.59 (3), p.923-935 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 935 |
---|---|
container_issue | 3 |
container_start_page | 923 |
container_title | AIChE journal |
container_volume | 59 |
creator | Monazam, Esmail R. Shadle, Lawrence J. Miller, David C. Pennline, Henry W. Fauth, Daniel J. Hoffman, James S. Gray, McMahan L. |
description | Thermogravimetric analysis is used to study the adsorption kinetics, equilibrium, and thermodynamics of CO2 on immobilized polyethylenimine sorbent impregnated on a mesoporous silica over the range of 300–390 K and 5–100% CO2 concentration. Adsorption isotherm models were fitted to the experimental data indicating that a change in adsorption mechanism occurred near 70°C. Below this temperature, the adsorption data followed the heterogeneous isotherms, while data taken at higher‐temperatures followed isotherms for homogeneous surfaces. Heat of sorption was estimated to be 130 kJ/mole for the low‐temperature regime, but this decreased to 48 kJ/mole above 70°C. The rate of CO2 fractional uptake decreased as temperature increased. A phenomenological kinetic model was derived from the Weibull distribution function using a nucleation growth theory to describe the two‐step process. The kinetic model was used to predict the uptake at different operating conditions and resulted in good agreement with experimental data. Published 2012 American Institute of Chemical Engineers AIChE J, 2013 |
doi_str_mv | 10.1002/aic.13870 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671519017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2901053211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4010-fdddf9320761be2695a63bd7003d61748d8cd2133d0ac805fac9645eb1bf1fc13</originalsourceid><addsrcrecordid>eNqFkcFLHDEYxUOx4Gp78D8IeGkPo9832SQzR1nsqiwtSou9hUySkawzkzXZoa5_vdlu9VAQySG85PfeF_IIOUI4QYDyVHtzgqyS8IFMkE9lwWvge2QCAFjkA9wnByktsyplVU7I8vxh9J1voh97qgdL7_3g1t6kLHS3ST7R0FKjYxMGan149NZluVqP0dEx-eGO-r4PTc54cpbqPttpRjXtXQqrEMOYaMq3Rn8iH1vdJff5335Ifn07_zm7KBY_5pezs0VhpoBQtNbatmYlSIGNK0XNtWCNlQDMCpTTylbGlsiYBW0q4K02tZhy12DTYmuQHZIvu9xVDA-jS2vV-2Rc1-nB5dcoFBI51oDyfZSVeVW8Ehk9_g9dhjHmP9pSWDKWA7ezv-4oE0NK0bVqFX2v40YhqG1BKhek_haU2dMd-8d3bvM2qM4uZy-OYufwae0eXx063ishmeTq9vtcXf2Gm-vbhVCCPQOZSqEV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1312339011</pqid></control><display><type>article</type><title>Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Monazam, Esmail R. ; Shadle, Lawrence J. ; Miller, David C. ; Pennline, Henry W. ; Fauth, Daniel J. ; Hoffman, James S. ; Gray, McMahan L.</creator><creatorcontrib>Monazam, Esmail R. ; Shadle, Lawrence J. ; Miller, David C. ; Pennline, Henry W. ; Fauth, Daniel J. ; Hoffman, James S. ; Gray, McMahan L.</creatorcontrib><description>Thermogravimetric analysis is used to study the adsorption kinetics, equilibrium, and thermodynamics of CO2 on immobilized polyethylenimine sorbent impregnated on a mesoporous silica over the range of 300–390 K and 5–100% CO2 concentration. Adsorption isotherm models were fitted to the experimental data indicating that a change in adsorption mechanism occurred near 70°C. Below this temperature, the adsorption data followed the heterogeneous isotherms, while data taken at higher‐temperatures followed isotherms for homogeneous surfaces. Heat of sorption was estimated to be 130 kJ/mole for the low‐temperature regime, but this decreased to 48 kJ/mole above 70°C. The rate of CO2 fractional uptake decreased as temperature increased. A phenomenological kinetic model was derived from the Weibull distribution function using a nucleation growth theory to describe the two‐step process. The kinetic model was used to predict the uptake at different operating conditions and resulted in good agreement with experimental data. Published 2012 American Institute of Chemical Engineers AIChE J, 2013</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.13870</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>New York: Blackwell Publishing Ltd</publisher><subject>Adsorption ; adsorption/gas ; Carbon monoxide ; Carbon sequestration ; engineering ; environmental ; green engineering ; Indexing in process ; Isotherms ; Kinetics ; Mathematical models ; Moles ; nucleation ; reaction kinetics ; Silica ; Silicon dioxide ; Surface chemistry ; Temperature effects ; Thermodynamics ; Thermogravimetric analysis ; Uptakes</subject><ispartof>AIChE journal, 2013-03, Vol.59 (3), p.923-935</ispartof><rights>Copyright © 2012 American Institute of Chemical Engineers (AIChE)</rights><rights>Copyright American Institute of Chemical Engineers Mar 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4010-fdddf9320761be2695a63bd7003d61748d8cd2133d0ac805fac9645eb1bf1fc13</citedby><cites>FETCH-LOGICAL-c4010-fdddf9320761be2695a63bd7003d61748d8cd2133d0ac805fac9645eb1bf1fc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.13870$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.13870$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Monazam, Esmail R.</creatorcontrib><creatorcontrib>Shadle, Lawrence J.</creatorcontrib><creatorcontrib>Miller, David C.</creatorcontrib><creatorcontrib>Pennline, Henry W.</creatorcontrib><creatorcontrib>Fauth, Daniel J.</creatorcontrib><creatorcontrib>Hoffman, James S.</creatorcontrib><creatorcontrib>Gray, McMahan L.</creatorcontrib><title>Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Thermogravimetric analysis is used to study the adsorption kinetics, equilibrium, and thermodynamics of CO2 on immobilized polyethylenimine sorbent impregnated on a mesoporous silica over the range of 300–390 K and 5–100% CO2 concentration. Adsorption isotherm models were fitted to the experimental data indicating that a change in adsorption mechanism occurred near 70°C. Below this temperature, the adsorption data followed the heterogeneous isotherms, while data taken at higher‐temperatures followed isotherms for homogeneous surfaces. Heat of sorption was estimated to be 130 kJ/mole for the low‐temperature regime, but this decreased to 48 kJ/mole above 70°C. The rate of CO2 fractional uptake decreased as temperature increased. A phenomenological kinetic model was derived from the Weibull distribution function using a nucleation growth theory to describe the two‐step process. The kinetic model was used to predict the uptake at different operating conditions and resulted in good agreement with experimental data. Published 2012 American Institute of Chemical Engineers AIChE J, 2013</description><subject>Adsorption</subject><subject>adsorption/gas</subject><subject>Carbon monoxide</subject><subject>Carbon sequestration</subject><subject>engineering</subject><subject>environmental</subject><subject>green engineering</subject><subject>Indexing in process</subject><subject>Isotherms</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Moles</subject><subject>nucleation</subject><subject>reaction kinetics</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Surface chemistry</subject><subject>Temperature effects</subject><subject>Thermodynamics</subject><subject>Thermogravimetric analysis</subject><subject>Uptakes</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkcFLHDEYxUOx4Gp78D8IeGkPo9832SQzR1nsqiwtSou9hUySkawzkzXZoa5_vdlu9VAQySG85PfeF_IIOUI4QYDyVHtzgqyS8IFMkE9lwWvge2QCAFjkA9wnByktsyplVU7I8vxh9J1voh97qgdL7_3g1t6kLHS3ST7R0FKjYxMGan149NZluVqP0dEx-eGO-r4PTc54cpbqPttpRjXtXQqrEMOYaMq3Rn8iH1vdJff5335Ifn07_zm7KBY_5pezs0VhpoBQtNbatmYlSIGNK0XNtWCNlQDMCpTTylbGlsiYBW0q4K02tZhy12DTYmuQHZIvu9xVDA-jS2vV-2Rc1-nB5dcoFBI51oDyfZSVeVW8Ehk9_g9dhjHmP9pSWDKWA7ezv-4oE0NK0bVqFX2v40YhqG1BKhek_haU2dMd-8d3bvM2qM4uZy-OYufwae0eXx063ishmeTq9vtcXf2Gm-vbhVCCPQOZSqEV</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Monazam, Esmail R.</creator><creator>Shadle, Lawrence J.</creator><creator>Miller, David C.</creator><creator>Pennline, Henry W.</creator><creator>Fauth, Daniel J.</creator><creator>Hoffman, James S.</creator><creator>Gray, McMahan L.</creator><general>Blackwell Publishing Ltd</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><scope>7QH</scope><scope>7UA</scope></search><sort><creationdate>201303</creationdate><title>Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica</title><author>Monazam, Esmail R. ; Shadle, Lawrence J. ; Miller, David C. ; Pennline, Henry W. ; Fauth, Daniel J. ; Hoffman, James S. ; Gray, McMahan L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4010-fdddf9320761be2695a63bd7003d61748d8cd2133d0ac805fac9645eb1bf1fc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adsorption</topic><topic>adsorption/gas</topic><topic>Carbon monoxide</topic><topic>Carbon sequestration</topic><topic>engineering</topic><topic>environmental</topic><topic>green engineering</topic><topic>Indexing in process</topic><topic>Isotherms</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Moles</topic><topic>nucleation</topic><topic>reaction kinetics</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Surface chemistry</topic><topic>Temperature effects</topic><topic>Thermodynamics</topic><topic>Thermogravimetric analysis</topic><topic>Uptakes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monazam, Esmail R.</creatorcontrib><creatorcontrib>Shadle, Lawrence J.</creatorcontrib><creatorcontrib>Miller, David C.</creatorcontrib><creatorcontrib>Pennline, Henry W.</creatorcontrib><creatorcontrib>Fauth, Daniel J.</creatorcontrib><creatorcontrib>Hoffman, James S.</creatorcontrib><creatorcontrib>Gray, McMahan L.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monazam, Esmail R.</au><au>Shadle, Lawrence J.</au><au>Miller, David C.</au><au>Pennline, Henry W.</au><au>Fauth, Daniel J.</au><au>Hoffman, James S.</au><au>Gray, McMahan L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2013-03</date><risdate>2013</risdate><volume>59</volume><issue>3</issue><spage>923</spage><epage>935</epage><pages>923-935</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Thermogravimetric analysis is used to study the adsorption kinetics, equilibrium, and thermodynamics of CO2 on immobilized polyethylenimine sorbent impregnated on a mesoporous silica over the range of 300–390 K and 5–100% CO2 concentration. Adsorption isotherm models were fitted to the experimental data indicating that a change in adsorption mechanism occurred near 70°C. Below this temperature, the adsorption data followed the heterogeneous isotherms, while data taken at higher‐temperatures followed isotherms for homogeneous surfaces. Heat of sorption was estimated to be 130 kJ/mole for the low‐temperature regime, but this decreased to 48 kJ/mole above 70°C. The rate of CO2 fractional uptake decreased as temperature increased. A phenomenological kinetic model was derived from the Weibull distribution function using a nucleation growth theory to describe the two‐step process. The kinetic model was used to predict the uptake at different operating conditions and resulted in good agreement with experimental data. Published 2012 American Institute of Chemical Engineers AIChE J, 2013</abstract><cop>New York</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aic.13870</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2013-03, Vol.59 (3), p.923-935 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671519017 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Adsorption adsorption/gas Carbon monoxide Carbon sequestration engineering environmental green engineering Indexing in process Isotherms Kinetics Mathematical models Moles nucleation reaction kinetics Silica Silicon dioxide Surface chemistry Temperature effects Thermodynamics Thermogravimetric analysis Uptakes |
title | Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A17%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equilibrium%20and%20kinetics%20analysis%20of%20carbon%20dioxide%20capture%20using%20immobilized%20amine%20on%20a%20mesoporous%20silica&rft.jtitle=AIChE%20journal&rft.au=Monazam,%20Esmail%20R.&rft.date=2013-03&rft.volume=59&rft.issue=3&rft.spage=923&rft.epage=935&rft.pages=923-935&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.13870&rft_dat=%3Cproquest_cross%3E2901053211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1312339011&rft_id=info:pmid/&rfr_iscdi=true |