Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica

Thermogravimetric analysis is used to study the adsorption kinetics, equilibrium, and thermodynamics of CO2 on immobilized polyethylenimine sorbent impregnated on a mesoporous silica over the range of 300–390 K and 5–100% CO2 concentration. Adsorption isotherm models were fitted to the experimental...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2013-03, Vol.59 (3), p.923-935
Hauptverfasser: Monazam, Esmail R., Shadle, Lawrence J., Miller, David C., Pennline, Henry W., Fauth, Daniel J., Hoffman, James S., Gray, McMahan L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 935
container_issue 3
container_start_page 923
container_title AIChE journal
container_volume 59
creator Monazam, Esmail R.
Shadle, Lawrence J.
Miller, David C.
Pennline, Henry W.
Fauth, Daniel J.
Hoffman, James S.
Gray, McMahan L.
description Thermogravimetric analysis is used to study the adsorption kinetics, equilibrium, and thermodynamics of CO2 on immobilized polyethylenimine sorbent impregnated on a mesoporous silica over the range of 300–390 K and 5–100% CO2 concentration. Adsorption isotherm models were fitted to the experimental data indicating that a change in adsorption mechanism occurred near 70°C. Below this temperature, the adsorption data followed the heterogeneous isotherms, while data taken at higher‐temperatures followed isotherms for homogeneous surfaces. Heat of sorption was estimated to be 130 kJ/mole for the low‐temperature regime, but this decreased to 48 kJ/mole above 70°C. The rate of CO2 fractional uptake decreased as temperature increased. A phenomenological kinetic model was derived from the Weibull distribution function using a nucleation growth theory to describe the two‐step process. The kinetic model was used to predict the uptake at different operating conditions and resulted in good agreement with experimental data. Published 2012 American Institute of Chemical Engineers AIChE J, 2013
doi_str_mv 10.1002/aic.13870
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671519017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2901053211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4010-fdddf9320761be2695a63bd7003d61748d8cd2133d0ac805fac9645eb1bf1fc13</originalsourceid><addsrcrecordid>eNqFkcFLHDEYxUOx4Gp78D8IeGkPo9832SQzR1nsqiwtSou9hUySkawzkzXZoa5_vdlu9VAQySG85PfeF_IIOUI4QYDyVHtzgqyS8IFMkE9lwWvge2QCAFjkA9wnByktsyplVU7I8vxh9J1voh97qgdL7_3g1t6kLHS3ST7R0FKjYxMGan149NZluVqP0dEx-eGO-r4PTc54cpbqPttpRjXtXQqrEMOYaMq3Rn8iH1vdJff5335Ifn07_zm7KBY_5pezs0VhpoBQtNbatmYlSIGNK0XNtWCNlQDMCpTTylbGlsiYBW0q4K02tZhy12DTYmuQHZIvu9xVDA-jS2vV-2Rc1-nB5dcoFBI51oDyfZSVeVW8Ehk9_g9dhjHmP9pSWDKWA7ezv-4oE0NK0bVqFX2v40YhqG1BKhek_haU2dMd-8d3bvM2qM4uZy-OYufwae0eXx063ishmeTq9vtcXf2Gm-vbhVCCPQOZSqEV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1312339011</pqid></control><display><type>article</type><title>Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Monazam, Esmail R. ; Shadle, Lawrence J. ; Miller, David C. ; Pennline, Henry W. ; Fauth, Daniel J. ; Hoffman, James S. ; Gray, McMahan L.</creator><creatorcontrib>Monazam, Esmail R. ; Shadle, Lawrence J. ; Miller, David C. ; Pennline, Henry W. ; Fauth, Daniel J. ; Hoffman, James S. ; Gray, McMahan L.</creatorcontrib><description>Thermogravimetric analysis is used to study the adsorption kinetics, equilibrium, and thermodynamics of CO2 on immobilized polyethylenimine sorbent impregnated on a mesoporous silica over the range of 300–390 K and 5–100% CO2 concentration. Adsorption isotherm models were fitted to the experimental data indicating that a change in adsorption mechanism occurred near 70°C. Below this temperature, the adsorption data followed the heterogeneous isotherms, while data taken at higher‐temperatures followed isotherms for homogeneous surfaces. Heat of sorption was estimated to be 130 kJ/mole for the low‐temperature regime, but this decreased to 48 kJ/mole above 70°C. The rate of CO2 fractional uptake decreased as temperature increased. A phenomenological kinetic model was derived from the Weibull distribution function using a nucleation growth theory to describe the two‐step process. The kinetic model was used to predict the uptake at different operating conditions and resulted in good agreement with experimental data. Published 2012 American Institute of Chemical Engineers AIChE J, 2013</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.13870</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>New York: Blackwell Publishing Ltd</publisher><subject>Adsorption ; adsorption/gas ; Carbon monoxide ; Carbon sequestration ; engineering ; environmental ; green engineering ; Indexing in process ; Isotherms ; Kinetics ; Mathematical models ; Moles ; nucleation ; reaction kinetics ; Silica ; Silicon dioxide ; Surface chemistry ; Temperature effects ; Thermodynamics ; Thermogravimetric analysis ; Uptakes</subject><ispartof>AIChE journal, 2013-03, Vol.59 (3), p.923-935</ispartof><rights>Copyright © 2012 American Institute of Chemical Engineers (AIChE)</rights><rights>Copyright American Institute of Chemical Engineers Mar 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4010-fdddf9320761be2695a63bd7003d61748d8cd2133d0ac805fac9645eb1bf1fc13</citedby><cites>FETCH-LOGICAL-c4010-fdddf9320761be2695a63bd7003d61748d8cd2133d0ac805fac9645eb1bf1fc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.13870$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.13870$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Monazam, Esmail R.</creatorcontrib><creatorcontrib>Shadle, Lawrence J.</creatorcontrib><creatorcontrib>Miller, David C.</creatorcontrib><creatorcontrib>Pennline, Henry W.</creatorcontrib><creatorcontrib>Fauth, Daniel J.</creatorcontrib><creatorcontrib>Hoffman, James S.</creatorcontrib><creatorcontrib>Gray, McMahan L.</creatorcontrib><title>Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Thermogravimetric analysis is used to study the adsorption kinetics, equilibrium, and thermodynamics of CO2 on immobilized polyethylenimine sorbent impregnated on a mesoporous silica over the range of 300–390 K and 5–100% CO2 concentration. Adsorption isotherm models were fitted to the experimental data indicating that a change in adsorption mechanism occurred near 70°C. Below this temperature, the adsorption data followed the heterogeneous isotherms, while data taken at higher‐temperatures followed isotherms for homogeneous surfaces. Heat of sorption was estimated to be 130 kJ/mole for the low‐temperature regime, but this decreased to 48 kJ/mole above 70°C. The rate of CO2 fractional uptake decreased as temperature increased. A phenomenological kinetic model was derived from the Weibull distribution function using a nucleation growth theory to describe the two‐step process. The kinetic model was used to predict the uptake at different operating conditions and resulted in good agreement with experimental data. Published 2012 American Institute of Chemical Engineers AIChE J, 2013</description><subject>Adsorption</subject><subject>adsorption/gas</subject><subject>Carbon monoxide</subject><subject>Carbon sequestration</subject><subject>engineering</subject><subject>environmental</subject><subject>green engineering</subject><subject>Indexing in process</subject><subject>Isotherms</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Moles</subject><subject>nucleation</subject><subject>reaction kinetics</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Surface chemistry</subject><subject>Temperature effects</subject><subject>Thermodynamics</subject><subject>Thermogravimetric analysis</subject><subject>Uptakes</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkcFLHDEYxUOx4Gp78D8IeGkPo9832SQzR1nsqiwtSou9hUySkawzkzXZoa5_vdlu9VAQySG85PfeF_IIOUI4QYDyVHtzgqyS8IFMkE9lwWvge2QCAFjkA9wnByktsyplVU7I8vxh9J1voh97qgdL7_3g1t6kLHS3ST7R0FKjYxMGan149NZluVqP0dEx-eGO-r4PTc54cpbqPttpRjXtXQqrEMOYaMq3Rn8iH1vdJff5335Ifn07_zm7KBY_5pezs0VhpoBQtNbatmYlSIGNK0XNtWCNlQDMCpTTylbGlsiYBW0q4K02tZhy12DTYmuQHZIvu9xVDA-jS2vV-2Rc1-nB5dcoFBI51oDyfZSVeVW8Ehk9_g9dhjHmP9pSWDKWA7ezv-4oE0NK0bVqFX2v40YhqG1BKhek_haU2dMd-8d3bvM2qM4uZy-OYufwae0eXx063ishmeTq9vtcXf2Gm-vbhVCCPQOZSqEV</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Monazam, Esmail R.</creator><creator>Shadle, Lawrence J.</creator><creator>Miller, David C.</creator><creator>Pennline, Henry W.</creator><creator>Fauth, Daniel J.</creator><creator>Hoffman, James S.</creator><creator>Gray, McMahan L.</creator><general>Blackwell Publishing Ltd</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><scope>7QH</scope><scope>7UA</scope></search><sort><creationdate>201303</creationdate><title>Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica</title><author>Monazam, Esmail R. ; Shadle, Lawrence J. ; Miller, David C. ; Pennline, Henry W. ; Fauth, Daniel J. ; Hoffman, James S. ; Gray, McMahan L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4010-fdddf9320761be2695a63bd7003d61748d8cd2133d0ac805fac9645eb1bf1fc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adsorption</topic><topic>adsorption/gas</topic><topic>Carbon monoxide</topic><topic>Carbon sequestration</topic><topic>engineering</topic><topic>environmental</topic><topic>green engineering</topic><topic>Indexing in process</topic><topic>Isotherms</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Moles</topic><topic>nucleation</topic><topic>reaction kinetics</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Surface chemistry</topic><topic>Temperature effects</topic><topic>Thermodynamics</topic><topic>Thermogravimetric analysis</topic><topic>Uptakes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monazam, Esmail R.</creatorcontrib><creatorcontrib>Shadle, Lawrence J.</creatorcontrib><creatorcontrib>Miller, David C.</creatorcontrib><creatorcontrib>Pennline, Henry W.</creatorcontrib><creatorcontrib>Fauth, Daniel J.</creatorcontrib><creatorcontrib>Hoffman, James S.</creatorcontrib><creatorcontrib>Gray, McMahan L.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monazam, Esmail R.</au><au>Shadle, Lawrence J.</au><au>Miller, David C.</au><au>Pennline, Henry W.</au><au>Fauth, Daniel J.</au><au>Hoffman, James S.</au><au>Gray, McMahan L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2013-03</date><risdate>2013</risdate><volume>59</volume><issue>3</issue><spage>923</spage><epage>935</epage><pages>923-935</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Thermogravimetric analysis is used to study the adsorption kinetics, equilibrium, and thermodynamics of CO2 on immobilized polyethylenimine sorbent impregnated on a mesoporous silica over the range of 300–390 K and 5–100% CO2 concentration. Adsorption isotherm models were fitted to the experimental data indicating that a change in adsorption mechanism occurred near 70°C. Below this temperature, the adsorption data followed the heterogeneous isotherms, while data taken at higher‐temperatures followed isotherms for homogeneous surfaces. Heat of sorption was estimated to be 130 kJ/mole for the low‐temperature regime, but this decreased to 48 kJ/mole above 70°C. The rate of CO2 fractional uptake decreased as temperature increased. A phenomenological kinetic model was derived from the Weibull distribution function using a nucleation growth theory to describe the two‐step process. The kinetic model was used to predict the uptake at different operating conditions and resulted in good agreement with experimental data. Published 2012 American Institute of Chemical Engineers AIChE J, 2013</abstract><cop>New York</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aic.13870</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2013-03, Vol.59 (3), p.923-935
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_miscellaneous_1671519017
source Wiley Online Library Journals Frontfile Complete
subjects Adsorption
adsorption/gas
Carbon monoxide
Carbon sequestration
engineering
environmental
green engineering
Indexing in process
Isotherms
Kinetics
Mathematical models
Moles
nucleation
reaction kinetics
Silica
Silicon dioxide
Surface chemistry
Temperature effects
Thermodynamics
Thermogravimetric analysis
Uptakes
title Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A17%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equilibrium%20and%20kinetics%20analysis%20of%20carbon%20dioxide%20capture%20using%20immobilized%20amine%20on%20a%20mesoporous%20silica&rft.jtitle=AIChE%20journal&rft.au=Monazam,%20Esmail%20R.&rft.date=2013-03&rft.volume=59&rft.issue=3&rft.spage=923&rft.epage=935&rft.pages=923-935&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.13870&rft_dat=%3Cproquest_cross%3E2901053211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1312339011&rft_id=info:pmid/&rfr_iscdi=true