Design of Electronic Aviation Oxygen Regulator Structure

Operation principal of Electronic Oxygen Regulator (EOR) was explained in this paper. A mathematic model was established on Matlab/Simulink platform to study the maximum flow of pulmonic valve and design method of compression spring rigidity. Selecting criteria for main parameters of EOR is determin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2013-09, Vol.421 (Information Technology for Manufacturing Systems IV), p.150-156
Hauptverfasser: Zeng, Yu, Zhou, Ying, Du, Chen Hui, Lan, Yu Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 156
container_issue Information Technology for Manufacturing Systems IV
container_start_page 150
container_title Applied Mechanics and Materials
container_volume 421
creator Zeng, Yu
Zhou, Ying
Du, Chen Hui
Lan, Yu Qing
description Operation principal of Electronic Oxygen Regulator (EOR) was explained in this paper. A mathematic model was established on Matlab/Simulink platform to study the maximum flow of pulmonic valve and design method of compression spring rigidity. Selecting criteria for main parameters of EOR is determined quickly and efficiently through simulation. Conclusion of simulation is of great reference value for EOR engineering.
doi_str_mv 10.4028/www.scientific.net/AMM.421.150
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671514148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3098722471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3040-3853b2f4fc2c9445bcf95ea1aa855484469db925bf3e5a69d67051f08c5dc7bc3</originalsourceid><addsrcrecordid>eNqNkNtKAzEQhoMHsK2-w4Ig3uw22SS72Rux1HoAS8HDdcimSU1ZszXJWvv2plZQvPJqGObnm5kPgDMEMwJzNlyv15mXRtlgtJGZVWE4mk4zkqMMUbgHeqgo8rQkLN8HfQxxySgrGTv4GsC0wrg4An3vlxAWBBHWA-xKebOwSauTSaNkcK01Mhm9GxFMa5PZx2ahbPKgFl0jQuuSx-A6GTqnjsGhFo1XJ991AJ6vJ0_j2_R-dnM3Ht2nEkMCU8wornNNtMxlRQitpa6oEkgIRilhhBTVvK5yWmusqIhNUUKKNGSSzmVZSzwA5zvuyrVvnfKBvxovVdMIq9rOc1SUiKLtMzF6-ie6bDtn43UcEYJYwTApY-pil5Ku9d4pzVfOvAq34QjyrWUeLfMfyzxa5tEyj5Z5tBwBlztAcML6oOTLrz3_Q3wCrAWLIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1441868347</pqid></control><display><type>article</type><title>Design of Electronic Aviation Oxygen Regulator Structure</title><source>Scientific.net Journals</source><creator>Zeng, Yu ; Zhou, Ying ; Du, Chen Hui ; Lan, Yu Qing</creator><creatorcontrib>Zeng, Yu ; Zhou, Ying ; Du, Chen Hui ; Lan, Yu Qing</creatorcontrib><description>Operation principal of Electronic Oxygen Regulator (EOR) was explained in this paper. A mathematic model was established on Matlab/Simulink platform to study the maximum flow of pulmonic valve and design method of compression spring rigidity. Selecting criteria for main parameters of EOR is determined quickly and efficiently through simulation. Conclusion of simulation is of great reference value for EOR engineering.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037858788</identifier><identifier>ISBN: 9783037858783</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.421.150</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Aviation ; Avionics ; Compressing ; Computer simulation ; Mathematical models ; Matlab ; Oxygen regulators ; Springs</subject><ispartof>Applied Mechanics and Materials, 2013-09, Vol.421 (Information Technology for Manufacturing Systems IV), p.150-156</ispartof><rights>2013 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Sep 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3040-3853b2f4fc2c9445bcf95ea1aa855484469db925bf3e5a69d67051f08c5dc7bc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2728?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zeng, Yu</creatorcontrib><creatorcontrib>Zhou, Ying</creatorcontrib><creatorcontrib>Du, Chen Hui</creatorcontrib><creatorcontrib>Lan, Yu Qing</creatorcontrib><title>Design of Electronic Aviation Oxygen Regulator Structure</title><title>Applied Mechanics and Materials</title><description>Operation principal of Electronic Oxygen Regulator (EOR) was explained in this paper. A mathematic model was established on Matlab/Simulink platform to study the maximum flow of pulmonic valve and design method of compression spring rigidity. Selecting criteria for main parameters of EOR is determined quickly and efficiently through simulation. Conclusion of simulation is of great reference value for EOR engineering.</description><subject>Aviation</subject><subject>Avionics</subject><subject>Compressing</subject><subject>Computer simulation</subject><subject>Mathematical models</subject><subject>Matlab</subject><subject>Oxygen regulators</subject><subject>Springs</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037858788</isbn><isbn>9783037858783</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkNtKAzEQhoMHsK2-w4Ig3uw22SS72Rux1HoAS8HDdcimSU1ZszXJWvv2plZQvPJqGObnm5kPgDMEMwJzNlyv15mXRtlgtJGZVWE4mk4zkqMMUbgHeqgo8rQkLN8HfQxxySgrGTv4GsC0wrg4An3vlxAWBBHWA-xKebOwSauTSaNkcK01Mhm9GxFMa5PZx2ahbPKgFl0jQuuSx-A6GTqnjsGhFo1XJ991AJ6vJ0_j2_R-dnM3Ht2nEkMCU8wornNNtMxlRQitpa6oEkgIRilhhBTVvK5yWmusqIhNUUKKNGSSzmVZSzwA5zvuyrVvnfKBvxovVdMIq9rOc1SUiKLtMzF6-ie6bDtn43UcEYJYwTApY-pil5Ku9d4pzVfOvAq34QjyrWUeLfMfyzxa5tEyj5Z5tBwBlztAcML6oOTLrz3_Q3wCrAWLIg</recordid><startdate>20130911</startdate><enddate>20130911</enddate><creator>Zeng, Yu</creator><creator>Zhou, Ying</creator><creator>Du, Chen Hui</creator><creator>Lan, Yu Qing</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130911</creationdate><title>Design of Electronic Aviation Oxygen Regulator Structure</title><author>Zeng, Yu ; Zhou, Ying ; Du, Chen Hui ; Lan, Yu Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3040-3853b2f4fc2c9445bcf95ea1aa855484469db925bf3e5a69d67051f08c5dc7bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aviation</topic><topic>Avionics</topic><topic>Compressing</topic><topic>Computer simulation</topic><topic>Mathematical models</topic><topic>Matlab</topic><topic>Oxygen regulators</topic><topic>Springs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Yu</creatorcontrib><creatorcontrib>Zhou, Ying</creatorcontrib><creatorcontrib>Du, Chen Hui</creatorcontrib><creatorcontrib>Lan, Yu Qing</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Yu</au><au>Zhou, Ying</au><au>Du, Chen Hui</au><au>Lan, Yu Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Electronic Aviation Oxygen Regulator Structure</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2013-09-11</date><risdate>2013</risdate><volume>421</volume><issue>Information Technology for Manufacturing Systems IV</issue><spage>150</spage><epage>156</epage><pages>150-156</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037858788</isbn><isbn>9783037858783</isbn><abstract>Operation principal of Electronic Oxygen Regulator (EOR) was explained in this paper. A mathematic model was established on Matlab/Simulink platform to study the maximum flow of pulmonic valve and design method of compression spring rigidity. Selecting criteria for main parameters of EOR is determined quickly and efficiently through simulation. Conclusion of simulation is of great reference value for EOR engineering.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.421.150</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2013-09, Vol.421 (Information Technology for Manufacturing Systems IV), p.150-156
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_miscellaneous_1671514148
source Scientific.net Journals
subjects Aviation
Avionics
Compressing
Computer simulation
Mathematical models
Matlab
Oxygen regulators
Springs
title Design of Electronic Aviation Oxygen Regulator Structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A13%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Electronic%20Aviation%20Oxygen%20Regulator%20Structure&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Zeng,%20Yu&rft.date=2013-09-11&rft.volume=421&rft.issue=Information%20Technology%20for%20Manufacturing%20Systems%20IV&rft.spage=150&rft.epage=156&rft.pages=150-156&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037858788&rft.isbn_list=9783037858783&rft_id=info:doi/10.4028/www.scientific.net/AMM.421.150&rft_dat=%3Cproquest_cross%3E3098722471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1441868347&rft_id=info:pmid/&rfr_iscdi=true