Design of Electronic Aviation Oxygen Regulator Structure
Operation principal of Electronic Oxygen Regulator (EOR) was explained in this paper. A mathematic model was established on Matlab/Simulink platform to study the maximum flow of pulmonic valve and design method of compression spring rigidity. Selecting criteria for main parameters of EOR is determin...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2013-09, Vol.421 (Information Technology for Manufacturing Systems IV), p.150-156 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 156 |
---|---|
container_issue | Information Technology for Manufacturing Systems IV |
container_start_page | 150 |
container_title | Applied Mechanics and Materials |
container_volume | 421 |
creator | Zeng, Yu Zhou, Ying Du, Chen Hui Lan, Yu Qing |
description | Operation principal of Electronic Oxygen Regulator (EOR) was explained in this paper. A mathematic model was established on Matlab/Simulink platform to study the maximum flow of pulmonic valve and design method of compression spring rigidity. Selecting criteria for main parameters of EOR is determined quickly and efficiently through simulation. Conclusion of simulation is of great reference value for EOR engineering. |
doi_str_mv | 10.4028/www.scientific.net/AMM.421.150 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671514148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3098722471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3040-3853b2f4fc2c9445bcf95ea1aa855484469db925bf3e5a69d67051f08c5dc7bc3</originalsourceid><addsrcrecordid>eNqNkNtKAzEQhoMHsK2-w4Ig3uw22SS72Rux1HoAS8HDdcimSU1ZszXJWvv2plZQvPJqGObnm5kPgDMEMwJzNlyv15mXRtlgtJGZVWE4mk4zkqMMUbgHeqgo8rQkLN8HfQxxySgrGTv4GsC0wrg4An3vlxAWBBHWA-xKebOwSauTSaNkcK01Mhm9GxFMa5PZx2ahbPKgFl0jQuuSx-A6GTqnjsGhFo1XJ991AJ6vJ0_j2_R-dnM3Ht2nEkMCU8wornNNtMxlRQitpa6oEkgIRilhhBTVvK5yWmusqIhNUUKKNGSSzmVZSzwA5zvuyrVvnfKBvxovVdMIq9rOc1SUiKLtMzF6-ie6bDtn43UcEYJYwTApY-pil5Ku9d4pzVfOvAq34QjyrWUeLfMfyzxa5tEyj5Z5tBwBlztAcML6oOTLrz3_Q3wCrAWLIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1441868347</pqid></control><display><type>article</type><title>Design of Electronic Aviation Oxygen Regulator Structure</title><source>Scientific.net Journals</source><creator>Zeng, Yu ; Zhou, Ying ; Du, Chen Hui ; Lan, Yu Qing</creator><creatorcontrib>Zeng, Yu ; Zhou, Ying ; Du, Chen Hui ; Lan, Yu Qing</creatorcontrib><description>Operation principal of Electronic Oxygen Regulator (EOR) was explained in this paper. A mathematic model was established on Matlab/Simulink platform to study the maximum flow of pulmonic valve and design method of compression spring rigidity. Selecting criteria for main parameters of EOR is determined quickly and efficiently through simulation. Conclusion of simulation is of great reference value for EOR engineering.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037858788</identifier><identifier>ISBN: 9783037858783</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.421.150</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Aviation ; Avionics ; Compressing ; Computer simulation ; Mathematical models ; Matlab ; Oxygen regulators ; Springs</subject><ispartof>Applied Mechanics and Materials, 2013-09, Vol.421 (Information Technology for Manufacturing Systems IV), p.150-156</ispartof><rights>2013 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Sep 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3040-3853b2f4fc2c9445bcf95ea1aa855484469db925bf3e5a69d67051f08c5dc7bc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2728?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zeng, Yu</creatorcontrib><creatorcontrib>Zhou, Ying</creatorcontrib><creatorcontrib>Du, Chen Hui</creatorcontrib><creatorcontrib>Lan, Yu Qing</creatorcontrib><title>Design of Electronic Aviation Oxygen Regulator Structure</title><title>Applied Mechanics and Materials</title><description>Operation principal of Electronic Oxygen Regulator (EOR) was explained in this paper. A mathematic model was established on Matlab/Simulink platform to study the maximum flow of pulmonic valve and design method of compression spring rigidity. Selecting criteria for main parameters of EOR is determined quickly and efficiently through simulation. Conclusion of simulation is of great reference value for EOR engineering.</description><subject>Aviation</subject><subject>Avionics</subject><subject>Compressing</subject><subject>Computer simulation</subject><subject>Mathematical models</subject><subject>Matlab</subject><subject>Oxygen regulators</subject><subject>Springs</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037858788</isbn><isbn>9783037858783</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkNtKAzEQhoMHsK2-w4Ig3uw22SS72Rux1HoAS8HDdcimSU1ZszXJWvv2plZQvPJqGObnm5kPgDMEMwJzNlyv15mXRtlgtJGZVWE4mk4zkqMMUbgHeqgo8rQkLN8HfQxxySgrGTv4GsC0wrg4An3vlxAWBBHWA-xKebOwSauTSaNkcK01Mhm9GxFMa5PZx2ahbPKgFl0jQuuSx-A6GTqnjsGhFo1XJ991AJ6vJ0_j2_R-dnM3Ht2nEkMCU8wornNNtMxlRQitpa6oEkgIRilhhBTVvK5yWmusqIhNUUKKNGSSzmVZSzwA5zvuyrVvnfKBvxovVdMIq9rOc1SUiKLtMzF6-ie6bDtn43UcEYJYwTApY-pil5Ku9d4pzVfOvAq34QjyrWUeLfMfyzxa5tEyj5Z5tBwBlztAcML6oOTLrz3_Q3wCrAWLIg</recordid><startdate>20130911</startdate><enddate>20130911</enddate><creator>Zeng, Yu</creator><creator>Zhou, Ying</creator><creator>Du, Chen Hui</creator><creator>Lan, Yu Qing</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130911</creationdate><title>Design of Electronic Aviation Oxygen Regulator Structure</title><author>Zeng, Yu ; Zhou, Ying ; Du, Chen Hui ; Lan, Yu Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3040-3853b2f4fc2c9445bcf95ea1aa855484469db925bf3e5a69d67051f08c5dc7bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aviation</topic><topic>Avionics</topic><topic>Compressing</topic><topic>Computer simulation</topic><topic>Mathematical models</topic><topic>Matlab</topic><topic>Oxygen regulators</topic><topic>Springs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Yu</creatorcontrib><creatorcontrib>Zhou, Ying</creatorcontrib><creatorcontrib>Du, Chen Hui</creatorcontrib><creatorcontrib>Lan, Yu Qing</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Yu</au><au>Zhou, Ying</au><au>Du, Chen Hui</au><au>Lan, Yu Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Electronic Aviation Oxygen Regulator Structure</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2013-09-11</date><risdate>2013</risdate><volume>421</volume><issue>Information Technology for Manufacturing Systems IV</issue><spage>150</spage><epage>156</epage><pages>150-156</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037858788</isbn><isbn>9783037858783</isbn><abstract>Operation principal of Electronic Oxygen Regulator (EOR) was explained in this paper. A mathematic model was established on Matlab/Simulink platform to study the maximum flow of pulmonic valve and design method of compression spring rigidity. Selecting criteria for main parameters of EOR is determined quickly and efficiently through simulation. Conclusion of simulation is of great reference value for EOR engineering.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.421.150</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2013-09, Vol.421 (Information Technology for Manufacturing Systems IV), p.150-156 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671514148 |
source | Scientific.net Journals |
subjects | Aviation Avionics Compressing Computer simulation Mathematical models Matlab Oxygen regulators Springs |
title | Design of Electronic Aviation Oxygen Regulator Structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A13%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Electronic%20Aviation%20Oxygen%20Regulator%20Structure&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Zeng,%20Yu&rft.date=2013-09-11&rft.volume=421&rft.issue=Information%20Technology%20for%20Manufacturing%20Systems%20IV&rft.spage=150&rft.epage=156&rft.pages=150-156&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037858788&rft.isbn_list=9783037858783&rft_id=info:doi/10.4028/www.scientific.net/AMM.421.150&rft_dat=%3Cproquest_cross%3E3098722471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1441868347&rft_id=info:pmid/&rfr_iscdi=true |