Acid azo dye remediation in anoxic–aerobic–anoxic microenvironment under periodic discontinuous batch operation: Bio-electro kinetics and microbial inventory

▸ C.I. Acid black 10B degradation was studied in periodic discontinuous batch operation. ▸ Anoxic–aerobic–anoxic microenvironment showed good removal of azo dye. ▸ Azo-reductase and dehydrogenase activity were monitored during dye degradation. ▸ Tafel analysis and bioprocess parameters correlated we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2012-09, Vol.119, p.362-372
Hauptverfasser: Venkata Mohan, S., Suresh Babu, P., Naresh, K., Velvizhi, G., Madamwar, Datta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 372
container_issue
container_start_page 362
container_title Bioresource technology
container_volume 119
creator Venkata Mohan, S.
Suresh Babu, P.
Naresh, K.
Velvizhi, G.
Madamwar, Datta
description ▸ C.I. Acid black 10B degradation was studied in periodic discontinuous batch operation. ▸ Anoxic–aerobic–anoxic microenvironment showed good removal of azo dye. ▸ Azo-reductase and dehydrogenase activity were monitored during dye degradation. ▸ Tafel analysis and bioprocess parameters correlated well with dye removal. ▸ Presence of specific organism capable of dye degradation was observed. Functional behavior of anoxic–aerobic–anoxic microenvironment on azo dye (C.I. Acid black 10B) degradation was evaluated in a periodic discontinuous batch mode operation for 26 cycles. Dye removal efficiency and azo-reductase activity (30.50±1U) increased with each feeding event until 13th cycle and further stabilized. Dehydrogenase activity also increased gradually and stabilized (2.0±0.2μg/ml) indicating the stable proton shuttling between metabolic intermediates providing higher number of reducing equivalents towards dye degradation. Voltammetric profiles showed drop in redox catalytic currents during stabilized phase also supports the consumption of reducing equivalents towards dye removal. Change in Tafel slopes, polarization resistance and other bioprocess parameters correlated well with the observed dye removal and biocatalyst behavior. Microbial community analysis documented the involvement of specific organism pertaining to aerobic and facultative functions with heterotrophic and autotrophic metabolism. Integrating anoxic microenvironment with aerobic operation might have facilitated effective dye mineralization due to the possibility of combining redox functions.
doi_str_mv 10.1016/j.biortech.2012.05.125
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671510562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852412008826</els_id><sourcerecordid>1671510562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-cd76e9a1f75f79a0d2ea045ce423299a09683cf6395e3767a30a49f797869efa3</originalsourceid><addsrcrecordid>eNqFkU1uFDEQhS0EIkPgCpGXbLrxT9tusyJE_EmR2MDactvViodue7B7Rgwr7pAT5GqcBCedsM3KVtWr91T1IXRGSUsJlW-27RBSXsBdtYxQ1hLRUiaeoA3tFW-YVvIp2hAtSdML1p2gF6VsCSGcKvYcnTCmBBGk26Cbcxc8tr8T9kfAGWbwwS4hRRwitjH9Cu7vn2sLOQ3r766E5-BygngIOcUZ4oL30UPGO8gh-dr3obgUlxD3aV_wYBd3hVPt3lm_xe9DamACt-SEf4QIS3ClpvnVdwh2qvGH6pvy8SV6NtqpwKv79xR9__jh28Xn5vLrpy8X55eN63i3NM4rCdrSUYlRaUs8A0s64aBjnOla0LLnbpRcC-BKKsuJ7XSVql5qGC0_Ra9X311OP_dQFjPXJWCabIS6hKFSUUGJkOxxKeG90KpTXZXKVVr3KiXDaHY5zDYfq8jckjRb80DS3JI0RJhKsg6e3Wfshwrl_9gDuip4twqgHuUQIJviAkRXAeZ6WeNTeCzjH7PnuOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038597474</pqid></control><display><type>article</type><title>Acid azo dye remediation in anoxic–aerobic–anoxic microenvironment under periodic discontinuous batch operation: Bio-electro kinetics and microbial inventory</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Venkata Mohan, S. ; Suresh Babu, P. ; Naresh, K. ; Velvizhi, G. ; Madamwar, Datta</creator><creatorcontrib>Venkata Mohan, S. ; Suresh Babu, P. ; Naresh, K. ; Velvizhi, G. ; Madamwar, Datta</creatorcontrib><description>▸ C.I. Acid black 10B degradation was studied in periodic discontinuous batch operation. ▸ Anoxic–aerobic–anoxic microenvironment showed good removal of azo dye. ▸ Azo-reductase and dehydrogenase activity were monitored during dye degradation. ▸ Tafel analysis and bioprocess parameters correlated well with dye removal. ▸ Presence of specific organism capable of dye degradation was observed. Functional behavior of anoxic–aerobic–anoxic microenvironment on azo dye (C.I. Acid black 10B) degradation was evaluated in a periodic discontinuous batch mode operation for 26 cycles. Dye removal efficiency and azo-reductase activity (30.50±1U) increased with each feeding event until 13th cycle and further stabilized. Dehydrogenase activity also increased gradually and stabilized (2.0±0.2μg/ml) indicating the stable proton shuttling between metabolic intermediates providing higher number of reducing equivalents towards dye degradation. Voltammetric profiles showed drop in redox catalytic currents during stabilized phase also supports the consumption of reducing equivalents towards dye removal. Change in Tafel slopes, polarization resistance and other bioprocess parameters correlated well with the observed dye removal and biocatalyst behavior. Microbial community analysis documented the involvement of specific organism pertaining to aerobic and facultative functions with heterotrophic and autotrophic metabolism. Integrating anoxic microenvironment with aerobic operation might have facilitated effective dye mineralization due to the possibility of combining redox functions.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2012.05.125</identifier><identifier>PMID: 22750504</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Acids - isolation &amp; purification ; Acids - metabolism ; Azo ; Azo Compounds - isolation &amp; purification ; Azo Compounds - metabolism ; Bacteria, Anaerobic - classification ; Bacteria, Anaerobic - metabolism ; Batch Cell Culture Techniques - methods ; Biodegradation, Environmental ; Coloring Agents - isolation &amp; purification ; Coloring Agents - metabolism ; Correlation ; Cyclic voltammeter ; Degradation ; Dehydrogenase activity ; Dyes ; Electric Impedance ; Equivalence ; Kinetics ; Microorganisms ; Remediation ; Sequencing batch reactor ; Tafel analysis ; Tafel slopes ; Wastewater treatment ; Water Pollutants, Chemical - isolation &amp; purification ; Water Pollutants, Chemical - metabolism ; Water Purification - methods</subject><ispartof>Bioresource technology, 2012-09, Vol.119, p.362-372</ispartof><rights>2012 Elsevier Ltd</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-cd76e9a1f75f79a0d2ea045ce423299a09683cf6395e3767a30a49f797869efa3</citedby><cites>FETCH-LOGICAL-c434t-cd76e9a1f75f79a0d2ea045ce423299a09683cf6395e3767a30a49f797869efa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biortech.2012.05.125$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22750504$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Venkata Mohan, S.</creatorcontrib><creatorcontrib>Suresh Babu, P.</creatorcontrib><creatorcontrib>Naresh, K.</creatorcontrib><creatorcontrib>Velvizhi, G.</creatorcontrib><creatorcontrib>Madamwar, Datta</creatorcontrib><title>Acid azo dye remediation in anoxic–aerobic–anoxic microenvironment under periodic discontinuous batch operation: Bio-electro kinetics and microbial inventory</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>▸ C.I. Acid black 10B degradation was studied in periodic discontinuous batch operation. ▸ Anoxic–aerobic–anoxic microenvironment showed good removal of azo dye. ▸ Azo-reductase and dehydrogenase activity were monitored during dye degradation. ▸ Tafel analysis and bioprocess parameters correlated well with dye removal. ▸ Presence of specific organism capable of dye degradation was observed. Functional behavior of anoxic–aerobic–anoxic microenvironment on azo dye (C.I. Acid black 10B) degradation was evaluated in a periodic discontinuous batch mode operation for 26 cycles. Dye removal efficiency and azo-reductase activity (30.50±1U) increased with each feeding event until 13th cycle and further stabilized. Dehydrogenase activity also increased gradually and stabilized (2.0±0.2μg/ml) indicating the stable proton shuttling between metabolic intermediates providing higher number of reducing equivalents towards dye degradation. Voltammetric profiles showed drop in redox catalytic currents during stabilized phase also supports the consumption of reducing equivalents towards dye removal. Change in Tafel slopes, polarization resistance and other bioprocess parameters correlated well with the observed dye removal and biocatalyst behavior. Microbial community analysis documented the involvement of specific organism pertaining to aerobic and facultative functions with heterotrophic and autotrophic metabolism. Integrating anoxic microenvironment with aerobic operation might have facilitated effective dye mineralization due to the possibility of combining redox functions.</description><subject>Acids - isolation &amp; purification</subject><subject>Acids - metabolism</subject><subject>Azo</subject><subject>Azo Compounds - isolation &amp; purification</subject><subject>Azo Compounds - metabolism</subject><subject>Bacteria, Anaerobic - classification</subject><subject>Bacteria, Anaerobic - metabolism</subject><subject>Batch Cell Culture Techniques - methods</subject><subject>Biodegradation, Environmental</subject><subject>Coloring Agents - isolation &amp; purification</subject><subject>Coloring Agents - metabolism</subject><subject>Correlation</subject><subject>Cyclic voltammeter</subject><subject>Degradation</subject><subject>Dehydrogenase activity</subject><subject>Dyes</subject><subject>Electric Impedance</subject><subject>Equivalence</subject><subject>Kinetics</subject><subject>Microorganisms</subject><subject>Remediation</subject><subject>Sequencing batch reactor</subject><subject>Tafel analysis</subject><subject>Tafel slopes</subject><subject>Wastewater treatment</subject><subject>Water Pollutants, Chemical - isolation &amp; purification</subject><subject>Water Pollutants, Chemical - metabolism</subject><subject>Water Purification - methods</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1uFDEQhS0EIkPgCpGXbLrxT9tusyJE_EmR2MDactvViodue7B7Rgwr7pAT5GqcBCedsM3KVtWr91T1IXRGSUsJlW-27RBSXsBdtYxQ1hLRUiaeoA3tFW-YVvIp2hAtSdML1p2gF6VsCSGcKvYcnTCmBBGk26Cbcxc8tr8T9kfAGWbwwS4hRRwitjH9Cu7vn2sLOQ3r766E5-BygngIOcUZ4oL30UPGO8gh-dr3obgUlxD3aV_wYBd3hVPt3lm_xe9DamACt-SEf4QIS3ClpvnVdwh2qvGH6pvy8SV6NtqpwKv79xR9__jh28Xn5vLrpy8X55eN63i3NM4rCdrSUYlRaUs8A0s64aBjnOla0LLnbpRcC-BKKsuJ7XSVql5qGC0_Ra9X311OP_dQFjPXJWCabIS6hKFSUUGJkOxxKeG90KpTXZXKVVr3KiXDaHY5zDYfq8jckjRb80DS3JI0RJhKsg6e3Wfshwrl_9gDuip4twqgHuUQIJviAkRXAeZ6WeNTeCzjH7PnuOI</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Venkata Mohan, S.</creator><creator>Suresh Babu, P.</creator><creator>Naresh, K.</creator><creator>Velvizhi, G.</creator><creator>Madamwar, Datta</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201209</creationdate><title>Acid azo dye remediation in anoxic–aerobic–anoxic microenvironment under periodic discontinuous batch operation: Bio-electro kinetics and microbial inventory</title><author>Venkata Mohan, S. ; Suresh Babu, P. ; Naresh, K. ; Velvizhi, G. ; Madamwar, Datta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-cd76e9a1f75f79a0d2ea045ce423299a09683cf6395e3767a30a49f797869efa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acids - isolation &amp; purification</topic><topic>Acids - metabolism</topic><topic>Azo</topic><topic>Azo Compounds - isolation &amp; purification</topic><topic>Azo Compounds - metabolism</topic><topic>Bacteria, Anaerobic - classification</topic><topic>Bacteria, Anaerobic - metabolism</topic><topic>Batch Cell Culture Techniques - methods</topic><topic>Biodegradation, Environmental</topic><topic>Coloring Agents - isolation &amp; purification</topic><topic>Coloring Agents - metabolism</topic><topic>Correlation</topic><topic>Cyclic voltammeter</topic><topic>Degradation</topic><topic>Dehydrogenase activity</topic><topic>Dyes</topic><topic>Electric Impedance</topic><topic>Equivalence</topic><topic>Kinetics</topic><topic>Microorganisms</topic><topic>Remediation</topic><topic>Sequencing batch reactor</topic><topic>Tafel analysis</topic><topic>Tafel slopes</topic><topic>Wastewater treatment</topic><topic>Water Pollutants, Chemical - isolation &amp; purification</topic><topic>Water Pollutants, Chemical - metabolism</topic><topic>Water Purification - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venkata Mohan, S.</creatorcontrib><creatorcontrib>Suresh Babu, P.</creatorcontrib><creatorcontrib>Naresh, K.</creatorcontrib><creatorcontrib>Velvizhi, G.</creatorcontrib><creatorcontrib>Madamwar, Datta</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venkata Mohan, S.</au><au>Suresh Babu, P.</au><au>Naresh, K.</au><au>Velvizhi, G.</au><au>Madamwar, Datta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acid azo dye remediation in anoxic–aerobic–anoxic microenvironment under periodic discontinuous batch operation: Bio-electro kinetics and microbial inventory</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2012-09</date><risdate>2012</risdate><volume>119</volume><spage>362</spage><epage>372</epage><pages>362-372</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>▸ C.I. Acid black 10B degradation was studied in periodic discontinuous batch operation. ▸ Anoxic–aerobic–anoxic microenvironment showed good removal of azo dye. ▸ Azo-reductase and dehydrogenase activity were monitored during dye degradation. ▸ Tafel analysis and bioprocess parameters correlated well with dye removal. ▸ Presence of specific organism capable of dye degradation was observed. Functional behavior of anoxic–aerobic–anoxic microenvironment on azo dye (C.I. Acid black 10B) degradation was evaluated in a periodic discontinuous batch mode operation for 26 cycles. Dye removal efficiency and azo-reductase activity (30.50±1U) increased with each feeding event until 13th cycle and further stabilized. Dehydrogenase activity also increased gradually and stabilized (2.0±0.2μg/ml) indicating the stable proton shuttling between metabolic intermediates providing higher number of reducing equivalents towards dye degradation. Voltammetric profiles showed drop in redox catalytic currents during stabilized phase also supports the consumption of reducing equivalents towards dye removal. Change in Tafel slopes, polarization resistance and other bioprocess parameters correlated well with the observed dye removal and biocatalyst behavior. Microbial community analysis documented the involvement of specific organism pertaining to aerobic and facultative functions with heterotrophic and autotrophic metabolism. Integrating anoxic microenvironment with aerobic operation might have facilitated effective dye mineralization due to the possibility of combining redox functions.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>22750504</pmid><doi>10.1016/j.biortech.2012.05.125</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2012-09, Vol.119, p.362-372
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_1671510562
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Acids - isolation & purification
Acids - metabolism
Azo
Azo Compounds - isolation & purification
Azo Compounds - metabolism
Bacteria, Anaerobic - classification
Bacteria, Anaerobic - metabolism
Batch Cell Culture Techniques - methods
Biodegradation, Environmental
Coloring Agents - isolation & purification
Coloring Agents - metabolism
Correlation
Cyclic voltammeter
Degradation
Dehydrogenase activity
Dyes
Electric Impedance
Equivalence
Kinetics
Microorganisms
Remediation
Sequencing batch reactor
Tafel analysis
Tafel slopes
Wastewater treatment
Water Pollutants, Chemical - isolation & purification
Water Pollutants, Chemical - metabolism
Water Purification - methods
title Acid azo dye remediation in anoxic–aerobic–anoxic microenvironment under periodic discontinuous batch operation: Bio-electro kinetics and microbial inventory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T23%3A16%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acid%20azo%20dye%20remediation%20in%20anoxic%E2%80%93aerobic%E2%80%93anoxic%20microenvironment%20under%20periodic%20discontinuous%20batch%20operation:%20Bio-electro%20kinetics%20and%20microbial%20inventory&rft.jtitle=Bioresource%20technology&rft.au=Venkata%20Mohan,%20S.&rft.date=2012-09&rft.volume=119&rft.spage=362&rft.epage=372&rft.pages=362-372&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2012.05.125&rft_dat=%3Cproquest_cross%3E1671510562%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038597474&rft_id=info:pmid/22750504&rft_els_id=S0960852412008826&rfr_iscdi=true