Testing recent charge-on-spring type polarizable water models. I. Melting temperature and ice properties

We determined the freezing point of eight molecular models of water. All models use the charge-on-spring (COS) method to express polarization. The studied models were the COS/G2, COS/G3 [H. Yu and W. F. van Gunsteren, J. Chem. Phys. 121, 9549 (2004)], the COS/B2 [H. Yu, T. Hansson, and W. F. van Gun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2012-11, Vol.137 (19), p.194102-194102
Hauptverfasser: Kiss, Péter T, Bertsyk, Péter, Baranyai, András
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 194102
container_issue 19
container_start_page 194102
container_title The Journal of chemical physics
container_volume 137
creator Kiss, Péter T
Bertsyk, Péter
Baranyai, András
description We determined the freezing point of eight molecular models of water. All models use the charge-on-spring (COS) method to express polarization. The studied models were the COS/G2, COS/G3 [H. Yu and W. F. van Gunsteren, J. Chem. Phys. 121, 9549 (2004)], the COS/B2 [H. Yu, T. Hansson, and W. F. van Gunsteren, J. Chem. Phys. 118, 221 (2003)], the SWM4-DP [G. Lamoureux, A. D. MacKerell, Jr., and B. Roux, J. Chem. Phys. 119, 5185 (2003)], the SWM4-NDP [G. Lamoureux, E. Harder, I. V. Vorobyov, B. Roux, and A. D. MacKerell, Jr., Chem. Phys. Lett. 418, 245 (2006)], and three versions of our model, the BKd1, BKd2, and BKd3. The BKd1 is the original Gaussian model [P. T. Kiss, M. Darvas, A. Baranyai, and P. Jedlovszky, J. Chem. Phys. 136, 114706 (2012)] with constant polarization and with a simple exponential repulsion. The BKd2 applies field-dependent polarizability [A. Baranyai and P. T. Kiss, J. Chem. Phys. 135, 234110 (2011)], while the BKd3 model has variable size to approximate the temperature-density (T-ρ) curve of water [P. T. Kiss and A. Baranyai, J. Chem. Phys. 137, 084506 (2012)]. We used the thermodynamic integration (TI) and the Gibbs-Helmholtz equation to determine the equality of the free energy for liquid water and hexagonal ice (Ih) at 1 bar. We used the TIP4P and the SPC/E models as reference systems of the TI. The studied models severely underestimate the experimental melting point of ice Ih. The calculated freezing points of the models are the following: COS/G2, 215 K; COS/G3, 149 K; SWM4-DP, 186 K; BKd1, 207 K; BKd2, 213 K; BKd3, 233 K. The freezing temperature of the SWM4-NDP system is certainly below 120 K. It might even be that the water phase is more stable than the ice Ih at 1 bar in the full temperature range. The COS/B2 model melts below 100 K. The best result was obtained for the BKd3 model which indicates that correct description of the (T-ρ) curve improves the estimation of the freezing point. We also determined and compared the densities of high-pressure polymorphs of ice for these models.
doi_str_mv 10.1063/1.4767063
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671507888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671507888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-ba57c78d2248e1d982db27e8befe47aea4f69f1974bcdf5f8ac81d6e70e14473</originalsourceid><addsrcrecordid>eNqNkctOwzAQRS0EoqWw4AeQl7BI8DhObC9RxUsqYtN95DiTNigv7FSofD0uLWxhNaOrM3c0cwm5BBYDy5JbiIXMZOiOyBSY0pHMNDsmU8Y4RDpj2YScef_GGAPJxSmZ8AQUcKWnZL1EP9bdijq02I3Uro1bYdR3kR_cTh-3A9Khb4yrP03RIP0wIzra9iU2PqbPMX3B5tthxHZAZ8aNQ2q6ktY2DLo-aGON_pycVKbxeHGoM7J8uF_On6LF6-Pz_G4R2SSFMSpMKq1UJedCIZRa8bLgElWBFQpp0Igq0xVoKQpbVmmljFVQZigZghAymZHrvW3Y_L4Jt-Vt7S02jemw3_gcMgkpk0qpv9GEJxyY-A_KZSJ0IHVAb_aodb33Dqs8_LE1bpsDy3dp5ZAf0grs1cF2U7RY_pI_8SRfwhGPXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273494889</pqid></control><display><type>article</type><title>Testing recent charge-on-spring type polarizable water models. I. Melting temperature and ice properties</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Kiss, Péter T ; Bertsyk, Péter ; Baranyai, András</creator><creatorcontrib>Kiss, Péter T ; Bertsyk, Péter ; Baranyai, András</creatorcontrib><description>We determined the freezing point of eight molecular models of water. All models use the charge-on-spring (COS) method to express polarization. The studied models were the COS/G2, COS/G3 [H. Yu and W. F. van Gunsteren, J. Chem. Phys. 121, 9549 (2004)], the COS/B2 [H. Yu, T. Hansson, and W. F. van Gunsteren, J. Chem. Phys. 118, 221 (2003)], the SWM4-DP [G. Lamoureux, A. D. MacKerell, Jr., and B. Roux, J. Chem. Phys. 119, 5185 (2003)], the SWM4-NDP [G. Lamoureux, E. Harder, I. V. Vorobyov, B. Roux, and A. D. MacKerell, Jr., Chem. Phys. Lett. 418, 245 (2006)], and three versions of our model, the BKd1, BKd2, and BKd3. The BKd1 is the original Gaussian model [P. T. Kiss, M. Darvas, A. Baranyai, and P. Jedlovszky, J. Chem. Phys. 136, 114706 (2012)] with constant polarization and with a simple exponential repulsion. The BKd2 applies field-dependent polarizability [A. Baranyai and P. T. Kiss, J. Chem. Phys. 135, 234110 (2011)], while the BKd3 model has variable size to approximate the temperature-density (T-ρ) curve of water [P. T. Kiss and A. Baranyai, J. Chem. Phys. 137, 084506 (2012)]. We used the thermodynamic integration (TI) and the Gibbs-Helmholtz equation to determine the equality of the free energy for liquid water and hexagonal ice (Ih) at 1 bar. We used the TIP4P and the SPC/E models as reference systems of the TI. The studied models severely underestimate the experimental melting point of ice Ih. The calculated freezing points of the models are the following: COS/G2, 215 K; COS/G3, 149 K; SWM4-DP, 186 K; BKd1, 207 K; BKd2, 213 K; BKd3, 233 K. The freezing temperature of the SWM4-NDP system is certainly below 120 K. It might even be that the water phase is more stable than the ice Ih at 1 bar in the full temperature range. The COS/B2 model melts below 100 K. The best result was obtained for the BKd3 model which indicates that correct description of the (T-ρ) curve improves the estimation of the freezing point. We also determined and compared the densities of high-pressure polymorphs of ice for these models.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4767063</identifier><identifier>PMID: 23181289</identifier><language>eng</language><publisher>United States</publisher><subject>Density ; Freezing point ; Gibbs-Helmholtz equations ; Mathematical models ; Melting points ; Polarization ; Reference systems ; Water</subject><ispartof>The Journal of chemical physics, 2012-11, Vol.137 (19), p.194102-194102</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-ba57c78d2248e1d982db27e8befe47aea4f69f1974bcdf5f8ac81d6e70e14473</citedby><cites>FETCH-LOGICAL-c351t-ba57c78d2248e1d982db27e8befe47aea4f69f1974bcdf5f8ac81d6e70e14473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23181289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kiss, Péter T</creatorcontrib><creatorcontrib>Bertsyk, Péter</creatorcontrib><creatorcontrib>Baranyai, András</creatorcontrib><title>Testing recent charge-on-spring type polarizable water models. I. Melting temperature and ice properties</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We determined the freezing point of eight molecular models of water. All models use the charge-on-spring (COS) method to express polarization. The studied models were the COS/G2, COS/G3 [H. Yu and W. F. van Gunsteren, J. Chem. Phys. 121, 9549 (2004)], the COS/B2 [H. Yu, T. Hansson, and W. F. van Gunsteren, J. Chem. Phys. 118, 221 (2003)], the SWM4-DP [G. Lamoureux, A. D. MacKerell, Jr., and B. Roux, J. Chem. Phys. 119, 5185 (2003)], the SWM4-NDP [G. Lamoureux, E. Harder, I. V. Vorobyov, B. Roux, and A. D. MacKerell, Jr., Chem. Phys. Lett. 418, 245 (2006)], and three versions of our model, the BKd1, BKd2, and BKd3. The BKd1 is the original Gaussian model [P. T. Kiss, M. Darvas, A. Baranyai, and P. Jedlovszky, J. Chem. Phys. 136, 114706 (2012)] with constant polarization and with a simple exponential repulsion. The BKd2 applies field-dependent polarizability [A. Baranyai and P. T. Kiss, J. Chem. Phys. 135, 234110 (2011)], while the BKd3 model has variable size to approximate the temperature-density (T-ρ) curve of water [P. T. Kiss and A. Baranyai, J. Chem. Phys. 137, 084506 (2012)]. We used the thermodynamic integration (TI) and the Gibbs-Helmholtz equation to determine the equality of the free energy for liquid water and hexagonal ice (Ih) at 1 bar. We used the TIP4P and the SPC/E models as reference systems of the TI. The studied models severely underestimate the experimental melting point of ice Ih. The calculated freezing points of the models are the following: COS/G2, 215 K; COS/G3, 149 K; SWM4-DP, 186 K; BKd1, 207 K; BKd2, 213 K; BKd3, 233 K. The freezing temperature of the SWM4-NDP system is certainly below 120 K. It might even be that the water phase is more stable than the ice Ih at 1 bar in the full temperature range. The COS/B2 model melts below 100 K. The best result was obtained for the BKd3 model which indicates that correct description of the (T-ρ) curve improves the estimation of the freezing point. We also determined and compared the densities of high-pressure polymorphs of ice for these models.</description><subject>Density</subject><subject>Freezing point</subject><subject>Gibbs-Helmholtz equations</subject><subject>Mathematical models</subject><subject>Melting points</subject><subject>Polarization</subject><subject>Reference systems</subject><subject>Water</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkctOwzAQRS0EoqWw4AeQl7BI8DhObC9RxUsqYtN95DiTNigv7FSofD0uLWxhNaOrM3c0cwm5BBYDy5JbiIXMZOiOyBSY0pHMNDsmU8Y4RDpj2YScef_GGAPJxSmZ8AQUcKWnZL1EP9bdijq02I3Uro1bYdR3kR_cTh-3A9Khb4yrP03RIP0wIzra9iU2PqbPMX3B5tthxHZAZ8aNQ2q6ktY2DLo-aGON_pycVKbxeHGoM7J8uF_On6LF6-Pz_G4R2SSFMSpMKq1UJedCIZRa8bLgElWBFQpp0Igq0xVoKQpbVmmljFVQZigZghAymZHrvW3Y_L4Jt-Vt7S02jemw3_gcMgkpk0qpv9GEJxyY-A_KZSJ0IHVAb_aodb33Dqs8_LE1bpsDy3dp5ZAf0grs1cF2U7RY_pI_8SRfwhGPXw</recordid><startdate>20121121</startdate><enddate>20121121</enddate><creator>Kiss, Péter T</creator><creator>Bertsyk, Péter</creator><creator>Baranyai, András</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20121121</creationdate><title>Testing recent charge-on-spring type polarizable water models. I. Melting temperature and ice properties</title><author>Kiss, Péter T ; Bertsyk, Péter ; Baranyai, András</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-ba57c78d2248e1d982db27e8befe47aea4f69f1974bcdf5f8ac81d6e70e14473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Density</topic><topic>Freezing point</topic><topic>Gibbs-Helmholtz equations</topic><topic>Mathematical models</topic><topic>Melting points</topic><topic>Polarization</topic><topic>Reference systems</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiss, Péter T</creatorcontrib><creatorcontrib>Bertsyk, Péter</creatorcontrib><creatorcontrib>Baranyai, András</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiss, Péter T</au><au>Bertsyk, Péter</au><au>Baranyai, András</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing recent charge-on-spring type polarizable water models. I. Melting temperature and ice properties</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2012-11-21</date><risdate>2012</risdate><volume>137</volume><issue>19</issue><spage>194102</spage><epage>194102</epage><pages>194102-194102</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We determined the freezing point of eight molecular models of water. All models use the charge-on-spring (COS) method to express polarization. The studied models were the COS/G2, COS/G3 [H. Yu and W. F. van Gunsteren, J. Chem. Phys. 121, 9549 (2004)], the COS/B2 [H. Yu, T. Hansson, and W. F. van Gunsteren, J. Chem. Phys. 118, 221 (2003)], the SWM4-DP [G. Lamoureux, A. D. MacKerell, Jr., and B. Roux, J. Chem. Phys. 119, 5185 (2003)], the SWM4-NDP [G. Lamoureux, E. Harder, I. V. Vorobyov, B. Roux, and A. D. MacKerell, Jr., Chem. Phys. Lett. 418, 245 (2006)], and three versions of our model, the BKd1, BKd2, and BKd3. The BKd1 is the original Gaussian model [P. T. Kiss, M. Darvas, A. Baranyai, and P. Jedlovszky, J. Chem. Phys. 136, 114706 (2012)] with constant polarization and with a simple exponential repulsion. The BKd2 applies field-dependent polarizability [A. Baranyai and P. T. Kiss, J. Chem. Phys. 135, 234110 (2011)], while the BKd3 model has variable size to approximate the temperature-density (T-ρ) curve of water [P. T. Kiss and A. Baranyai, J. Chem. Phys. 137, 084506 (2012)]. We used the thermodynamic integration (TI) and the Gibbs-Helmholtz equation to determine the equality of the free energy for liquid water and hexagonal ice (Ih) at 1 bar. We used the TIP4P and the SPC/E models as reference systems of the TI. The studied models severely underestimate the experimental melting point of ice Ih. The calculated freezing points of the models are the following: COS/G2, 215 K; COS/G3, 149 K; SWM4-DP, 186 K; BKd1, 207 K; BKd2, 213 K; BKd3, 233 K. The freezing temperature of the SWM4-NDP system is certainly below 120 K. It might even be that the water phase is more stable than the ice Ih at 1 bar in the full temperature range. The COS/B2 model melts below 100 K. The best result was obtained for the BKd3 model which indicates that correct description of the (T-ρ) curve improves the estimation of the freezing point. We also determined and compared the densities of high-pressure polymorphs of ice for these models.</abstract><cop>United States</cop><pmid>23181289</pmid><doi>10.1063/1.4767063</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2012-11, Vol.137 (19), p.194102-194102
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_1671507888
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Density
Freezing point
Gibbs-Helmholtz equations
Mathematical models
Melting points
Polarization
Reference systems
Water
title Testing recent charge-on-spring type polarizable water models. I. Melting temperature and ice properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A03%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20recent%20charge-on-spring%20type%20polarizable%20water%20models.%20I.%20Melting%20temperature%20and%20ice%20properties&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Kiss,%20P%C3%A9ter%20T&rft.date=2012-11-21&rft.volume=137&rft.issue=19&rft.spage=194102&rft.epage=194102&rft.pages=194102-194102&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4767063&rft_dat=%3Cproquest_cross%3E1671507888%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1273494889&rft_id=info:pmid/23181289&rfr_iscdi=true