Computing a Sequence of 2-Isogenies on Supersingular Elliptic Curves

Recently, some cryptographic primitives have been described that are based on the supposed hardness of finding an isogeny between two supersingular elliptic curves. As a part of such a primitive, Charles et al. proposed an algorithm for computing sequences of 2-isogenies. However, their method invol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2013/01/01, Vol.E96.A(1), pp.158-165
Hauptverfasser: YOSHIDA, Reo, TAKASHIMA, Katsuyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 165
container_issue 1
container_start_page 158
container_title IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
container_volume E96.A
creator YOSHIDA, Reo
TAKASHIMA, Katsuyuki
description Recently, some cryptographic primitives have been described that are based on the supposed hardness of finding an isogeny between two supersingular elliptic curves. As a part of such a primitive, Charles et al. proposed an algorithm for computing sequences of 2-isogenies. However, their method involves several redundant computations. We construct simple algorithms without such redundancy, based on very compact descriptions of the 2-isogenies. For that, we use some observations on 2-torsion points.
doi_str_mv 10.1587/transfun.E96.A.158
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671507799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671507799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-6b7723d9e35a887bb1af9cf524978ce5235ca8f7144127389b04a1cb7cb822d13</originalsourceid><addsrcrecordid>eNplkLFOwzAQhi0EEqXwAkweWVJ8dhw7YxUKVKrEUJgtx72UVKkT7ASJtydVoQxMJ_36vtPdT8gtsBlIre77YH2sBj9b5NlsfsjOyARUKhMQQp2TCcshS7Rk-pJcxbhjDDSHdEIeinbfDX3tt9TSNX4M6B3StqI8WcZ2i77GSFtP10OHIY7Y0NhAF01Td33taDGET4zX5KKyTcSbnzklb4-L1-I5Wb08LYv5KnESeJ9kpVJcbHIU0mqtyhJslbtK8jRX2qHkQjqrKwVpClwJnZcsteBK5UrN-QbElNwd93ahHS-NvdnX0WHTWI_tEA1kCiRTKs9HlB9RF9oYA1amC_Xehi8DzBwqM7-VmbEyMz9ko_R8lHaxt1s8KTaMvzb4T_lTT4h7t8GgF9_Ha3wB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671507799</pqid></control><display><type>article</type><title>Computing a Sequence of 2-Isogenies on Supersingular Elliptic Curves</title><source>J-STAGE Free</source><creator>YOSHIDA, Reo ; TAKASHIMA, Katsuyuki</creator><creatorcontrib>YOSHIDA, Reo ; TAKASHIMA, Katsuyuki</creatorcontrib><description>Recently, some cryptographic primitives have been described that are based on the supposed hardness of finding an isogeny between two supersingular elliptic curves. As a part of such a primitive, Charles et al. proposed an algorithm for computing sequences of 2-isogenies. However, their method involves several redundant computations. We construct simple algorithms without such redundancy, based on very compact descriptions of the 2-isogenies. For that, we use some observations on 2-torsion points.</description><identifier>ISSN: 0916-8508</identifier><identifier>EISSN: 1745-1337</identifier><identifier>DOI: 10.1587/transfun.E96.A.158</identifier><language>eng</language><publisher>The Institute of Electronics, Information and Communication Engineers</publisher><subject>Algorithms ; Computation ; Construction ; Cryptography ; Descriptions ; Electronics ; Hardness ; isogeny ; post-quantum cryptography ; Redundant ; supersingular elliptic curves</subject><ispartof>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2013/01/01, Vol.E96.A(1), pp.158-165</ispartof><rights>2013 The Institute of Electronics, Information and Communication Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-6b7723d9e35a887bb1af9cf524978ce5235ca8f7144127389b04a1cb7cb822d13</citedby><cites>FETCH-LOGICAL-c512t-6b7723d9e35a887bb1af9cf524978ce5235ca8f7144127389b04a1cb7cb822d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>YOSHIDA, Reo</creatorcontrib><creatorcontrib>TAKASHIMA, Katsuyuki</creatorcontrib><title>Computing a Sequence of 2-Isogenies on Supersingular Elliptic Curves</title><title>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</title><addtitle>IEICE Trans. Fundamentals</addtitle><description>Recently, some cryptographic primitives have been described that are based on the supposed hardness of finding an isogeny between two supersingular elliptic curves. As a part of such a primitive, Charles et al. proposed an algorithm for computing sequences of 2-isogenies. However, their method involves several redundant computations. We construct simple algorithms without such redundancy, based on very compact descriptions of the 2-isogenies. For that, we use some observations on 2-torsion points.</description><subject>Algorithms</subject><subject>Computation</subject><subject>Construction</subject><subject>Cryptography</subject><subject>Descriptions</subject><subject>Electronics</subject><subject>Hardness</subject><subject>isogeny</subject><subject>post-quantum cryptography</subject><subject>Redundant</subject><subject>supersingular elliptic curves</subject><issn>0916-8508</issn><issn>1745-1337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNplkLFOwzAQhi0EEqXwAkweWVJ8dhw7YxUKVKrEUJgtx72UVKkT7ASJtydVoQxMJ_36vtPdT8gtsBlIre77YH2sBj9b5NlsfsjOyARUKhMQQp2TCcshS7Rk-pJcxbhjDDSHdEIeinbfDX3tt9TSNX4M6B3StqI8WcZ2i77GSFtP10OHIY7Y0NhAF01Td33taDGET4zX5KKyTcSbnzklb4-L1-I5Wb08LYv5KnESeJ9kpVJcbHIU0mqtyhJslbtK8jRX2qHkQjqrKwVpClwJnZcsteBK5UrN-QbElNwd93ahHS-NvdnX0WHTWI_tEA1kCiRTKs9HlB9RF9oYA1amC_Xehi8DzBwqM7-VmbEyMz9ko_R8lHaxt1s8KTaMvzb4T_lTT4h7t8GgF9_Ha3wB</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>YOSHIDA, Reo</creator><creator>TAKASHIMA, Katsuyuki</creator><general>The Institute of Electronics, Information and Communication Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130101</creationdate><title>Computing a Sequence of 2-Isogenies on Supersingular Elliptic Curves</title><author>YOSHIDA, Reo ; TAKASHIMA, Katsuyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-6b7723d9e35a887bb1af9cf524978ce5235ca8f7144127389b04a1cb7cb822d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Computation</topic><topic>Construction</topic><topic>Cryptography</topic><topic>Descriptions</topic><topic>Electronics</topic><topic>Hardness</topic><topic>isogeny</topic><topic>post-quantum cryptography</topic><topic>Redundant</topic><topic>supersingular elliptic curves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YOSHIDA, Reo</creatorcontrib><creatorcontrib>TAKASHIMA, Katsuyuki</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>YOSHIDA, Reo</au><au>TAKASHIMA, Katsuyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing a Sequence of 2-Isogenies on Supersingular Elliptic Curves</atitle><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle><addtitle>IEICE Trans. Fundamentals</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>E96.A</volume><issue>1</issue><spage>158</spage><epage>165</epage><pages>158-165</pages><issn>0916-8508</issn><eissn>1745-1337</eissn><abstract>Recently, some cryptographic primitives have been described that are based on the supposed hardness of finding an isogeny between two supersingular elliptic curves. As a part of such a primitive, Charles et al. proposed an algorithm for computing sequences of 2-isogenies. However, their method involves several redundant computations. We construct simple algorithms without such redundancy, based on very compact descriptions of the 2-isogenies. For that, we use some observations on 2-torsion points.</abstract><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transfun.E96.A.158</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0916-8508
ispartof IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2013/01/01, Vol.E96.A(1), pp.158-165
issn 0916-8508
1745-1337
language eng
recordid cdi_proquest_miscellaneous_1671507799
source J-STAGE Free
subjects Algorithms
Computation
Construction
Cryptography
Descriptions
Electronics
Hardness
isogeny
post-quantum cryptography
Redundant
supersingular elliptic curves
title Computing a Sequence of 2-Isogenies on Supersingular Elliptic Curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A55%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20a%20Sequence%20of%202-Isogenies%20on%20Supersingular%20Elliptic%20Curves&rft.jtitle=IEICE%20Transactions%20on%20Fundamentals%20of%20Electronics,%20Communications%20and%20Computer%20Sciences&rft.au=YOSHIDA,%20Reo&rft.date=2013-01-01&rft.volume=E96.A&rft.issue=1&rft.spage=158&rft.epage=165&rft.pages=158-165&rft.issn=0916-8508&rft.eissn=1745-1337&rft_id=info:doi/10.1587/transfun.E96.A.158&rft_dat=%3Cproquest_cross%3E1671507799%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671507799&rft_id=info:pmid/&rfr_iscdi=true