Combustion of micron-aluminum and hydrogen peroxide propellants

In this paper we report the burning rate characteristics of hydrogen peroxide and micron-aluminum propellants. Theoretical calculations show that the sea level specific impulse of this simple binary mixture is comparable to standard composite propellant. In addition, the aluminum particle size, hydr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame 2013-01, Vol.160 (1), p.184-190
Hauptverfasser: Zaseck, Christopher R., Son, Steven F., Pourpoint, Timothée L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 190
container_issue 1
container_start_page 184
container_title Combustion and flame
container_volume 160
creator Zaseck, Christopher R.
Son, Steven F.
Pourpoint, Timothée L.
description In this paper we report the burning rate characteristics of hydrogen peroxide and micron-aluminum propellants. Theoretical calculations show that the sea level specific impulse of this simple binary mixture is comparable to standard composite propellant. In addition, the aluminum particle size, hydrogen peroxide concentration, and mixture ratio can be adjusted over a flat peak performance regime to attain specific thrust profiles and durations. We measured the burning rates in a windowed pressure vessel at pressures ranging from 7 to 14MPa. Results show that mixture burning rates span from 0.5 to 4.5cm/s at 7MPa with power law burning rate pressure exponents ranging from 0.33 to 1.07. In this study, we focus a statistical analysis on the determination of the most influential variables affecting the burning rate and apply a thermal analysis to determine the combustion regimes of these mixtures. The statistical analysis provided a multivariate regression model for the logarithm of the burning rate with a correlation coefficient of 0.93. The model suggests aluminum diameter is the most important factor affecting the overall burning rate, and H2O2 concentration as the most influential variable on the burning rate pressure dependence. The burning rate dependence on theoretical combustion temperature shows two distinct combustion regimes attributed to kinetic and diffusion controlled combustion. A simple thermal analysis confirms the experimental burning rate pressure dependence observed for these two regimes.
doi_str_mv 10.1016/j.combustflame.2012.10.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671506359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218012002799</els_id><sourcerecordid>1671506359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-f180b3ad29c493a31450d6981d67f4cbfddffbe115a1491b33dcc5ed55bca1193</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMouK7-hyIIXlozSZNtvYisn7DgRc8hzYdmaZs1acX992bdRbzpaWDmmXmH90XoFHABGPjFslC-a8Y42FZ2piAYSBoUGMMemgBjPCc1gX00SR2cE6jwITqKcYkxnpWUTtDVfLvvfJ95m3VOBd_nsh07149dJnudva118K-mz1Ym-E-nTbYKfmXaVvZDPEYHVrbRnOzqFL3c3T7PH_LF0_3j_HqRq7LiQ26TckOlJrUqayoplAxrXleg-cyWqrFaW9sYACahrKGhVCvFjGasURKgplN0vr2btN9HEwfRuai-nzB-jAL4DBjmlP0DZUDLpA_l3yipKOe45iShl1s0GRRjMFasgutkWAvAYpOFWIrfWYhNFptZcj4tn-10ZFSytUH2ysWfC2QGlOOKJ-5my5lk5YczQUTlTK-MdsGoQWjv_iP3BRWXplY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283660962</pqid></control><display><type>article</type><title>Combustion of micron-aluminum and hydrogen peroxide propellants</title><source>Elsevier ScienceDirect Journals</source><creator>Zaseck, Christopher R. ; Son, Steven F. ; Pourpoint, Timothée L.</creator><creatorcontrib>Zaseck, Christopher R. ; Son, Steven F. ; Pourpoint, Timothée L.</creatorcontrib><description>In this paper we report the burning rate characteristics of hydrogen peroxide and micron-aluminum propellants. Theoretical calculations show that the sea level specific impulse of this simple binary mixture is comparable to standard composite propellant. In addition, the aluminum particle size, hydrogen peroxide concentration, and mixture ratio can be adjusted over a flat peak performance regime to attain specific thrust profiles and durations. We measured the burning rates in a windowed pressure vessel at pressures ranging from 7 to 14MPa. Results show that mixture burning rates span from 0.5 to 4.5cm/s at 7MPa with power law burning rate pressure exponents ranging from 0.33 to 1.07. In this study, we focus a statistical analysis on the determination of the most influential variables affecting the burning rate and apply a thermal analysis to determine the combustion regimes of these mixtures. The statistical analysis provided a multivariate regression model for the logarithm of the burning rate with a correlation coefficient of 0.93. The model suggests aluminum diameter is the most important factor affecting the overall burning rate, and H2O2 concentration as the most influential variable on the burning rate pressure dependence. The burning rate dependence on theoretical combustion temperature shows two distinct combustion regimes attributed to kinetic and diffusion controlled combustion. A simple thermal analysis confirms the experimental burning rate pressure dependence observed for these two regimes.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2012.10.001</identifier><identifier>CODEN: CBFMAO</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Aluminum ; Applied sciences ; Burning rate ; Combustion ; Combustion. Flame ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Hydrogen peroxide ; Mathematical models ; Micron-aluminum ; Propellants ; Statistical analysis ; Theoretical studies. Data and constants. Metering ; Thermal analysis</subject><ispartof>Combustion and flame, 2013-01, Vol.160 (1), p.184-190</ispartof><rights>2012 The Combustion Institute.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-f180b3ad29c493a31450d6981d67f4cbfddffbe115a1491b33dcc5ed55bca1193</citedby><cites>FETCH-LOGICAL-c486t-f180b3ad29c493a31450d6981d67f4cbfddffbe115a1491b33dcc5ed55bca1193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010218012002799$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27136086$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zaseck, Christopher R.</creatorcontrib><creatorcontrib>Son, Steven F.</creatorcontrib><creatorcontrib>Pourpoint, Timothée L.</creatorcontrib><title>Combustion of micron-aluminum and hydrogen peroxide propellants</title><title>Combustion and flame</title><description>In this paper we report the burning rate characteristics of hydrogen peroxide and micron-aluminum propellants. Theoretical calculations show that the sea level specific impulse of this simple binary mixture is comparable to standard composite propellant. In addition, the aluminum particle size, hydrogen peroxide concentration, and mixture ratio can be adjusted over a flat peak performance regime to attain specific thrust profiles and durations. We measured the burning rates in a windowed pressure vessel at pressures ranging from 7 to 14MPa. Results show that mixture burning rates span from 0.5 to 4.5cm/s at 7MPa with power law burning rate pressure exponents ranging from 0.33 to 1.07. In this study, we focus a statistical analysis on the determination of the most influential variables affecting the burning rate and apply a thermal analysis to determine the combustion regimes of these mixtures. The statistical analysis provided a multivariate regression model for the logarithm of the burning rate with a correlation coefficient of 0.93. The model suggests aluminum diameter is the most important factor affecting the overall burning rate, and H2O2 concentration as the most influential variable on the burning rate pressure dependence. The burning rate dependence on theoretical combustion temperature shows two distinct combustion regimes attributed to kinetic and diffusion controlled combustion. A simple thermal analysis confirms the experimental burning rate pressure dependence observed for these two regimes.</description><subject>Aluminum</subject><subject>Applied sciences</subject><subject>Burning rate</subject><subject>Combustion</subject><subject>Combustion. Flame</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Hydrogen peroxide</subject><subject>Mathematical models</subject><subject>Micron-aluminum</subject><subject>Propellants</subject><subject>Statistical analysis</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal analysis</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LxDAQhoMouK7-hyIIXlozSZNtvYisn7DgRc8hzYdmaZs1acX992bdRbzpaWDmmXmH90XoFHABGPjFslC-a8Y42FZ2piAYSBoUGMMemgBjPCc1gX00SR2cE6jwITqKcYkxnpWUTtDVfLvvfJ95m3VOBd_nsh07149dJnudva118K-mz1Ym-E-nTbYKfmXaVvZDPEYHVrbRnOzqFL3c3T7PH_LF0_3j_HqRq7LiQ26TckOlJrUqayoplAxrXleg-cyWqrFaW9sYACahrKGhVCvFjGasURKgplN0vr2btN9HEwfRuai-nzB-jAL4DBjmlP0DZUDLpA_l3yipKOe45iShl1s0GRRjMFasgutkWAvAYpOFWIrfWYhNFptZcj4tn-10ZFSytUH2ysWfC2QGlOOKJ-5my5lk5YczQUTlTK-MdsGoQWjv_iP3BRWXplY</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Zaseck, Christopher R.</creator><creator>Son, Steven F.</creator><creator>Pourpoint, Timothée L.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130101</creationdate><title>Combustion of micron-aluminum and hydrogen peroxide propellants</title><author>Zaseck, Christopher R. ; Son, Steven F. ; Pourpoint, Timothée L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-f180b3ad29c493a31450d6981d67f4cbfddffbe115a1491b33dcc5ed55bca1193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aluminum</topic><topic>Applied sciences</topic><topic>Burning rate</topic><topic>Combustion</topic><topic>Combustion. Flame</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Hydrogen peroxide</topic><topic>Mathematical models</topic><topic>Micron-aluminum</topic><topic>Propellants</topic><topic>Statistical analysis</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaseck, Christopher R.</creatorcontrib><creatorcontrib>Son, Steven F.</creatorcontrib><creatorcontrib>Pourpoint, Timothée L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaseck, Christopher R.</au><au>Son, Steven F.</au><au>Pourpoint, Timothée L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combustion of micron-aluminum and hydrogen peroxide propellants</atitle><jtitle>Combustion and flame</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>160</volume><issue>1</issue><spage>184</spage><epage>190</epage><pages>184-190</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><coden>CBFMAO</coden><abstract>In this paper we report the burning rate characteristics of hydrogen peroxide and micron-aluminum propellants. Theoretical calculations show that the sea level specific impulse of this simple binary mixture is comparable to standard composite propellant. In addition, the aluminum particle size, hydrogen peroxide concentration, and mixture ratio can be adjusted over a flat peak performance regime to attain specific thrust profiles and durations. We measured the burning rates in a windowed pressure vessel at pressures ranging from 7 to 14MPa. Results show that mixture burning rates span from 0.5 to 4.5cm/s at 7MPa with power law burning rate pressure exponents ranging from 0.33 to 1.07. In this study, we focus a statistical analysis on the determination of the most influential variables affecting the burning rate and apply a thermal analysis to determine the combustion regimes of these mixtures. The statistical analysis provided a multivariate regression model for the logarithm of the burning rate with a correlation coefficient of 0.93. The model suggests aluminum diameter is the most important factor affecting the overall burning rate, and H2O2 concentration as the most influential variable on the burning rate pressure dependence. The burning rate dependence on theoretical combustion temperature shows two distinct combustion regimes attributed to kinetic and diffusion controlled combustion. A simple thermal analysis confirms the experimental burning rate pressure dependence observed for these two regimes.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2012.10.001</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 2013-01, Vol.160 (1), p.184-190
issn 0010-2180
1556-2921
language eng
recordid cdi_proquest_miscellaneous_1671506359
source Elsevier ScienceDirect Journals
subjects Aluminum
Applied sciences
Burning rate
Combustion
Combustion. Flame
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Hydrogen peroxide
Mathematical models
Micron-aluminum
Propellants
Statistical analysis
Theoretical studies. Data and constants. Metering
Thermal analysis
title Combustion of micron-aluminum and hydrogen peroxide propellants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A05%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combustion%20of%20micron-aluminum%20and%20hydrogen%20peroxide%20propellants&rft.jtitle=Combustion%20and%20flame&rft.au=Zaseck,%20Christopher%20R.&rft.date=2013-01-01&rft.volume=160&rft.issue=1&rft.spage=184&rft.epage=190&rft.pages=184-190&rft.issn=0010-2180&rft.eissn=1556-2921&rft.coden=CBFMAO&rft_id=info:doi/10.1016/j.combustflame.2012.10.001&rft_dat=%3Cproquest_cross%3E1671506359%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283660962&rft_id=info:pmid/&rft_els_id=S0010218012002799&rfr_iscdi=true