Numerical investigation of subcooled flow boiling of a nanofluid
Subcooled flow boiling of a nanofluid consisting of water and Al2O3 (dp = 30 nm) has been investigated numerically using two phase mixture model. Numerical predictions are compared to the previously published experimental works for pure water and alumina nanofluid and a good agreement is realized. I...
Gespeichert in:
Veröffentlicht in: | International journal of thermal sciences 2013-02, Vol.64, p.232-239 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 239 |
---|---|
container_issue | |
container_start_page | 232 |
container_title | International journal of thermal sciences |
container_volume | 64 |
creator | Abedini, E. Behzadmehr, A. Sarvari, S.M.H. Mansouri, S.H. |
description | Subcooled flow boiling of a nanofluid consisting of water and Al2O3 (dp = 30 nm) has been investigated numerically using two phase mixture model. Numerical predictions are compared to the previously published experimental works for pure water and alumina nanofluid and a good agreement is realized. It is observed that the convective heat transfer coefficient for a nanofluid in subcooled flow boiling is higher than that of the base fluid. Heat transfer coefficient increases with increasing of nanoparticles concentration. However, the effect of nanoparticle concentration on the heat transfer coefficient in the case of high inlet velocity is not significant. On the other hand, in subcooled flow boiling, decreasing the inlet mass flow rate can cause to decrease or increase the heat transfer coefficient which depends on the effect of forced convection and latent heat transport on the overall heat transfer coefficient.
► Subcooled flow boiling of a nanofluid is studied two phase mixture model. ► Convective heat transfer coefficient of nanofluid is higher than the base fluid. ► Different heat transfer mechanisms involves on the overall heat transfer coefficient. ► Increasing the inlet mass flow rate, heat transfer coefficient may increase or decrease. |
doi_str_mv | 10.1016/j.ijthermalsci.2012.08.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671506296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1290072912002323</els_id><sourcerecordid>1671506296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-19fd8c18297e847d776df38257856415bd84c84f880297007dc820b3edffca823</originalsourceid><addsrcrecordid>eNqNkM1KxDAYRYsoOI6-QxEEN61f0jb56krxH0Q3ug6Z_GiGTjMmreLbmzIi7nSVQE7uvZwsOyRQEiDsZFm65fBqwkp2UbmSAqElYAmAW9mMcI5FTRjbTnfaQgGctrvZXoxLAOAttLPs7GFcmeCU7HLXv5s4uBc5ON_n3uZxXCjvO6Nz2_mPfOFd5_qX6UXmvey97Uan97Mdm8rNwfc5z56vr54ubov7x5u7i_P7QtVNNRSktRoVQdpygzXXnDNtK6QNx4bVpFlorBXWFhESktZphRQWldHWKom0mmfHm9x18G9jGipWLirTdbI3foyCME4aYLRlf6MUK8ahqnlCTzeoCj7GYKxYB7eS4VMQEJNhsRS_DYvJsAAUyXD6fPTdI2MSaIPslYs_CZQTBKim6ZcbziQ_784EkZJMr4x2wahBaO_-U_cFPZCXaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283670347</pqid></control><display><type>article</type><title>Numerical investigation of subcooled flow boiling of a nanofluid</title><source>Access via ScienceDirect (Elsevier)</source><creator>Abedini, E. ; Behzadmehr, A. ; Sarvari, S.M.H. ; Mansouri, S.H.</creator><creatorcontrib>Abedini, E. ; Behzadmehr, A. ; Sarvari, S.M.H. ; Mansouri, S.H.</creatorcontrib><description>Subcooled flow boiling of a nanofluid consisting of water and Al2O3 (dp = 30 nm) has been investigated numerically using two phase mixture model. Numerical predictions are compared to the previously published experimental works for pure water and alumina nanofluid and a good agreement is realized. It is observed that the convective heat transfer coefficient for a nanofluid in subcooled flow boiling is higher than that of the base fluid. Heat transfer coefficient increases with increasing of nanoparticles concentration. However, the effect of nanoparticle concentration on the heat transfer coefficient in the case of high inlet velocity is not significant. On the other hand, in subcooled flow boiling, decreasing the inlet mass flow rate can cause to decrease or increase the heat transfer coefficient which depends on the effect of forced convection and latent heat transport on the overall heat transfer coefficient.
► Subcooled flow boiling of a nanofluid is studied two phase mixture model. ► Convective heat transfer coefficient of nanofluid is higher than the base fluid. ► Different heat transfer mechanisms involves on the overall heat transfer coefficient. ► Increasing the inlet mass flow rate, heat transfer coefficient may increase or decrease.</description><identifier>ISSN: 1290-0729</identifier><identifier>EISSN: 1778-4166</identifier><identifier>DOI: 10.1016/j.ijthermalsci.2012.08.008</identifier><language>eng</language><publisher>Kidlington: Elsevier Masson SAS</publisher><subject>Aluminum oxide ; Applied sciences ; Boiling ; Chemistry ; Colloidal state and disperse state ; Condensed matter: structure, mechanical and thermal properties ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; General and physical chemistry ; Heat transfer ; Heat transfer coefficients ; Mathematical models ; Mixture model ; Nanocomposites ; Nanofluid ; Nanofluids ; Nanomaterials ; Nanoparticles ; Nanostructure ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Physics ; Simulation ; Subcooled flow boiling ; Theoretical studies. Data and constants. Metering ; Thermal properties of condensed matter ; Thermal properties of small particles, nanocrystals, nanotubes</subject><ispartof>International journal of thermal sciences, 2013-02, Vol.64, p.232-239</ispartof><rights>2012 Elsevier Masson SAS</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-19fd8c18297e847d776df38257856415bd84c84f880297007dc820b3edffca823</citedby><cites>FETCH-LOGICAL-c453t-19fd8c18297e847d776df38257856415bd84c84f880297007dc820b3edffca823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijthermalsci.2012.08.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27180032$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Abedini, E.</creatorcontrib><creatorcontrib>Behzadmehr, A.</creatorcontrib><creatorcontrib>Sarvari, S.M.H.</creatorcontrib><creatorcontrib>Mansouri, S.H.</creatorcontrib><title>Numerical investigation of subcooled flow boiling of a nanofluid</title><title>International journal of thermal sciences</title><description>Subcooled flow boiling of a nanofluid consisting of water and Al2O3 (dp = 30 nm) has been investigated numerically using two phase mixture model. Numerical predictions are compared to the previously published experimental works for pure water and alumina nanofluid and a good agreement is realized. It is observed that the convective heat transfer coefficient for a nanofluid in subcooled flow boiling is higher than that of the base fluid. Heat transfer coefficient increases with increasing of nanoparticles concentration. However, the effect of nanoparticle concentration on the heat transfer coefficient in the case of high inlet velocity is not significant. On the other hand, in subcooled flow boiling, decreasing the inlet mass flow rate can cause to decrease or increase the heat transfer coefficient which depends on the effect of forced convection and latent heat transport on the overall heat transfer coefficient.
► Subcooled flow boiling of a nanofluid is studied two phase mixture model. ► Convective heat transfer coefficient of nanofluid is higher than the base fluid. ► Different heat transfer mechanisms involves on the overall heat transfer coefficient. ► Increasing the inlet mass flow rate, heat transfer coefficient may increase or decrease.</description><subject>Aluminum oxide</subject><subject>Applied sciences</subject><subject>Boiling</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Mathematical models</subject><subject>Mixture model</subject><subject>Nanocomposites</subject><subject>Nanofluid</subject><subject>Nanofluids</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Physics</subject><subject>Simulation</subject><subject>Subcooled flow boiling</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of small particles, nanocrystals, nanotubes</subject><issn>1290-0729</issn><issn>1778-4166</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkM1KxDAYRYsoOI6-QxEEN61f0jb56krxH0Q3ug6Z_GiGTjMmreLbmzIi7nSVQE7uvZwsOyRQEiDsZFm65fBqwkp2UbmSAqElYAmAW9mMcI5FTRjbTnfaQgGctrvZXoxLAOAttLPs7GFcmeCU7HLXv5s4uBc5ON_n3uZxXCjvO6Nz2_mPfOFd5_qX6UXmvey97Uan97Mdm8rNwfc5z56vr54ubov7x5u7i_P7QtVNNRSktRoVQdpygzXXnDNtK6QNx4bVpFlorBXWFhESktZphRQWldHWKom0mmfHm9x18G9jGipWLirTdbI3foyCME4aYLRlf6MUK8ahqnlCTzeoCj7GYKxYB7eS4VMQEJNhsRS_DYvJsAAUyXD6fPTdI2MSaIPslYs_CZQTBKim6ZcbziQ_784EkZJMr4x2wahBaO_-U_cFPZCXaQ</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Abedini, E.</creator><creator>Behzadmehr, A.</creator><creator>Sarvari, S.M.H.</creator><creator>Mansouri, S.H.</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130201</creationdate><title>Numerical investigation of subcooled flow boiling of a nanofluid</title><author>Abedini, E. ; Behzadmehr, A. ; Sarvari, S.M.H. ; Mansouri, S.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-19fd8c18297e847d776df38257856415bd84c84f880297007dc820b3edffca823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aluminum oxide</topic><topic>Applied sciences</topic><topic>Boiling</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Mathematical models</topic><topic>Mixture model</topic><topic>Nanocomposites</topic><topic>Nanofluid</topic><topic>Nanofluids</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Physics</topic><topic>Simulation</topic><topic>Subcooled flow boiling</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of small particles, nanocrystals, nanotubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abedini, E.</creatorcontrib><creatorcontrib>Behzadmehr, A.</creatorcontrib><creatorcontrib>Sarvari, S.M.H.</creatorcontrib><creatorcontrib>Mansouri, S.H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of thermal sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abedini, E.</au><au>Behzadmehr, A.</au><au>Sarvari, S.M.H.</au><au>Mansouri, S.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation of subcooled flow boiling of a nanofluid</atitle><jtitle>International journal of thermal sciences</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>64</volume><spage>232</spage><epage>239</epage><pages>232-239</pages><issn>1290-0729</issn><eissn>1778-4166</eissn><abstract>Subcooled flow boiling of a nanofluid consisting of water and Al2O3 (dp = 30 nm) has been investigated numerically using two phase mixture model. Numerical predictions are compared to the previously published experimental works for pure water and alumina nanofluid and a good agreement is realized. It is observed that the convective heat transfer coefficient for a nanofluid in subcooled flow boiling is higher than that of the base fluid. Heat transfer coefficient increases with increasing of nanoparticles concentration. However, the effect of nanoparticle concentration on the heat transfer coefficient in the case of high inlet velocity is not significant. On the other hand, in subcooled flow boiling, decreasing the inlet mass flow rate can cause to decrease or increase the heat transfer coefficient which depends on the effect of forced convection and latent heat transport on the overall heat transfer coefficient.
► Subcooled flow boiling of a nanofluid is studied two phase mixture model. ► Convective heat transfer coefficient of nanofluid is higher than the base fluid. ► Different heat transfer mechanisms involves on the overall heat transfer coefficient. ► Increasing the inlet mass flow rate, heat transfer coefficient may increase or decrease.</abstract><cop>Kidlington</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.ijthermalsci.2012.08.008</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1290-0729 |
ispartof | International journal of thermal sciences, 2013-02, Vol.64, p.232-239 |
issn | 1290-0729 1778-4166 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671506296 |
source | Access via ScienceDirect (Elsevier) |
subjects | Aluminum oxide Applied sciences Boiling Chemistry Colloidal state and disperse state Condensed matter: structure, mechanical and thermal properties Energy Energy. Thermal use of fuels Exact sciences and technology General and physical chemistry Heat transfer Heat transfer coefficients Mathematical models Mixture model Nanocomposites Nanofluid Nanofluids Nanomaterials Nanoparticles Nanostructure Physical and chemical studies. Granulometry. Electrokinetic phenomena Physics Simulation Subcooled flow boiling Theoretical studies. Data and constants. Metering Thermal properties of condensed matter Thermal properties of small particles, nanocrystals, nanotubes |
title | Numerical investigation of subcooled flow boiling of a nanofluid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T00%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation%20of%20subcooled%20flow%20boiling%20of%20a%20nanofluid&rft.jtitle=International%20journal%20of%20thermal%20sciences&rft.au=Abedini,%20E.&rft.date=2013-02-01&rft.volume=64&rft.spage=232&rft.epage=239&rft.pages=232-239&rft.issn=1290-0729&rft.eissn=1778-4166&rft_id=info:doi/10.1016/j.ijthermalsci.2012.08.008&rft_dat=%3Cproquest_cross%3E1671506296%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283670347&rft_id=info:pmid/&rft_els_id=S1290072912002323&rfr_iscdi=true |