Numerical investigation of subcooled flow boiling of a nanofluid

Subcooled flow boiling of a nanofluid consisting of water and Al2O3 (dp = 30 nm) has been investigated numerically using two phase mixture model. Numerical predictions are compared to the previously published experimental works for pure water and alumina nanofluid and a good agreement is realized. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of thermal sciences 2013-02, Vol.64, p.232-239
Hauptverfasser: Abedini, E., Behzadmehr, A., Sarvari, S.M.H., Mansouri, S.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 239
container_issue
container_start_page 232
container_title International journal of thermal sciences
container_volume 64
creator Abedini, E.
Behzadmehr, A.
Sarvari, S.M.H.
Mansouri, S.H.
description Subcooled flow boiling of a nanofluid consisting of water and Al2O3 (dp = 30 nm) has been investigated numerically using two phase mixture model. Numerical predictions are compared to the previously published experimental works for pure water and alumina nanofluid and a good agreement is realized. It is observed that the convective heat transfer coefficient for a nanofluid in subcooled flow boiling is higher than that of the base fluid. Heat transfer coefficient increases with increasing of nanoparticles concentration. However, the effect of nanoparticle concentration on the heat transfer coefficient in the case of high inlet velocity is not significant. On the other hand, in subcooled flow boiling, decreasing the inlet mass flow rate can cause to decrease or increase the heat transfer coefficient which depends on the effect of forced convection and latent heat transport on the overall heat transfer coefficient. ► Subcooled flow boiling of a nanofluid is studied two phase mixture model. ► Convective heat transfer coefficient of nanofluid is higher than the base fluid. ► Different heat transfer mechanisms involves on the overall heat transfer coefficient. ► Increasing the inlet mass flow rate, heat transfer coefficient may increase or decrease.
doi_str_mv 10.1016/j.ijthermalsci.2012.08.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671506296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1290072912002323</els_id><sourcerecordid>1671506296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-19fd8c18297e847d776df38257856415bd84c84f880297007dc820b3edffca823</originalsourceid><addsrcrecordid>eNqNkM1KxDAYRYsoOI6-QxEEN61f0jb56krxH0Q3ug6Z_GiGTjMmreLbmzIi7nSVQE7uvZwsOyRQEiDsZFm65fBqwkp2UbmSAqElYAmAW9mMcI5FTRjbTnfaQgGctrvZXoxLAOAttLPs7GFcmeCU7HLXv5s4uBc5ON_n3uZxXCjvO6Nz2_mPfOFd5_qX6UXmvey97Uan97Mdm8rNwfc5z56vr54ubov7x5u7i_P7QtVNNRSktRoVQdpygzXXnDNtK6QNx4bVpFlorBXWFhESktZphRQWldHWKom0mmfHm9x18G9jGipWLirTdbI3foyCME4aYLRlf6MUK8ahqnlCTzeoCj7GYKxYB7eS4VMQEJNhsRS_DYvJsAAUyXD6fPTdI2MSaIPslYs_CZQTBKim6ZcbziQ_784EkZJMr4x2wahBaO_-U_cFPZCXaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283670347</pqid></control><display><type>article</type><title>Numerical investigation of subcooled flow boiling of a nanofluid</title><source>Access via ScienceDirect (Elsevier)</source><creator>Abedini, E. ; Behzadmehr, A. ; Sarvari, S.M.H. ; Mansouri, S.H.</creator><creatorcontrib>Abedini, E. ; Behzadmehr, A. ; Sarvari, S.M.H. ; Mansouri, S.H.</creatorcontrib><description>Subcooled flow boiling of a nanofluid consisting of water and Al2O3 (dp = 30 nm) has been investigated numerically using two phase mixture model. Numerical predictions are compared to the previously published experimental works for pure water and alumina nanofluid and a good agreement is realized. It is observed that the convective heat transfer coefficient for a nanofluid in subcooled flow boiling is higher than that of the base fluid. Heat transfer coefficient increases with increasing of nanoparticles concentration. However, the effect of nanoparticle concentration on the heat transfer coefficient in the case of high inlet velocity is not significant. On the other hand, in subcooled flow boiling, decreasing the inlet mass flow rate can cause to decrease or increase the heat transfer coefficient which depends on the effect of forced convection and latent heat transport on the overall heat transfer coefficient. ► Subcooled flow boiling of a nanofluid is studied two phase mixture model. ► Convective heat transfer coefficient of nanofluid is higher than the base fluid. ► Different heat transfer mechanisms involves on the overall heat transfer coefficient. ► Increasing the inlet mass flow rate, heat transfer coefficient may increase or decrease.</description><identifier>ISSN: 1290-0729</identifier><identifier>EISSN: 1778-4166</identifier><identifier>DOI: 10.1016/j.ijthermalsci.2012.08.008</identifier><language>eng</language><publisher>Kidlington: Elsevier Masson SAS</publisher><subject>Aluminum oxide ; Applied sciences ; Boiling ; Chemistry ; Colloidal state and disperse state ; Condensed matter: structure, mechanical and thermal properties ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; General and physical chemistry ; Heat transfer ; Heat transfer coefficients ; Mathematical models ; Mixture model ; Nanocomposites ; Nanofluid ; Nanofluids ; Nanomaterials ; Nanoparticles ; Nanostructure ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Physics ; Simulation ; Subcooled flow boiling ; Theoretical studies. Data and constants. Metering ; Thermal properties of condensed matter ; Thermal properties of small particles, nanocrystals, nanotubes</subject><ispartof>International journal of thermal sciences, 2013-02, Vol.64, p.232-239</ispartof><rights>2012 Elsevier Masson SAS</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-19fd8c18297e847d776df38257856415bd84c84f880297007dc820b3edffca823</citedby><cites>FETCH-LOGICAL-c453t-19fd8c18297e847d776df38257856415bd84c84f880297007dc820b3edffca823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijthermalsci.2012.08.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27180032$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Abedini, E.</creatorcontrib><creatorcontrib>Behzadmehr, A.</creatorcontrib><creatorcontrib>Sarvari, S.M.H.</creatorcontrib><creatorcontrib>Mansouri, S.H.</creatorcontrib><title>Numerical investigation of subcooled flow boiling of a nanofluid</title><title>International journal of thermal sciences</title><description>Subcooled flow boiling of a nanofluid consisting of water and Al2O3 (dp = 30 nm) has been investigated numerically using two phase mixture model. Numerical predictions are compared to the previously published experimental works for pure water and alumina nanofluid and a good agreement is realized. It is observed that the convective heat transfer coefficient for a nanofluid in subcooled flow boiling is higher than that of the base fluid. Heat transfer coefficient increases with increasing of nanoparticles concentration. However, the effect of nanoparticle concentration on the heat transfer coefficient in the case of high inlet velocity is not significant. On the other hand, in subcooled flow boiling, decreasing the inlet mass flow rate can cause to decrease or increase the heat transfer coefficient which depends on the effect of forced convection and latent heat transport on the overall heat transfer coefficient. ► Subcooled flow boiling of a nanofluid is studied two phase mixture model. ► Convective heat transfer coefficient of nanofluid is higher than the base fluid. ► Different heat transfer mechanisms involves on the overall heat transfer coefficient. ► Increasing the inlet mass flow rate, heat transfer coefficient may increase or decrease.</description><subject>Aluminum oxide</subject><subject>Applied sciences</subject><subject>Boiling</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Mathematical models</subject><subject>Mixture model</subject><subject>Nanocomposites</subject><subject>Nanofluid</subject><subject>Nanofluids</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Physics</subject><subject>Simulation</subject><subject>Subcooled flow boiling</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of small particles, nanocrystals, nanotubes</subject><issn>1290-0729</issn><issn>1778-4166</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkM1KxDAYRYsoOI6-QxEEN61f0jb56krxH0Q3ug6Z_GiGTjMmreLbmzIi7nSVQE7uvZwsOyRQEiDsZFm65fBqwkp2UbmSAqElYAmAW9mMcI5FTRjbTnfaQgGctrvZXoxLAOAttLPs7GFcmeCU7HLXv5s4uBc5ON_n3uZxXCjvO6Nz2_mPfOFd5_qX6UXmvey97Uan97Mdm8rNwfc5z56vr54ubov7x5u7i_P7QtVNNRSktRoVQdpygzXXnDNtK6QNx4bVpFlorBXWFhESktZphRQWldHWKom0mmfHm9x18G9jGipWLirTdbI3foyCME4aYLRlf6MUK8ahqnlCTzeoCj7GYKxYB7eS4VMQEJNhsRS_DYvJsAAUyXD6fPTdI2MSaIPslYs_CZQTBKim6ZcbziQ_784EkZJMr4x2wahBaO_-U_cFPZCXaQ</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Abedini, E.</creator><creator>Behzadmehr, A.</creator><creator>Sarvari, S.M.H.</creator><creator>Mansouri, S.H.</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130201</creationdate><title>Numerical investigation of subcooled flow boiling of a nanofluid</title><author>Abedini, E. ; Behzadmehr, A. ; Sarvari, S.M.H. ; Mansouri, S.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-19fd8c18297e847d776df38257856415bd84c84f880297007dc820b3edffca823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aluminum oxide</topic><topic>Applied sciences</topic><topic>Boiling</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Mathematical models</topic><topic>Mixture model</topic><topic>Nanocomposites</topic><topic>Nanofluid</topic><topic>Nanofluids</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Physics</topic><topic>Simulation</topic><topic>Subcooled flow boiling</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of small particles, nanocrystals, nanotubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abedini, E.</creatorcontrib><creatorcontrib>Behzadmehr, A.</creatorcontrib><creatorcontrib>Sarvari, S.M.H.</creatorcontrib><creatorcontrib>Mansouri, S.H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of thermal sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abedini, E.</au><au>Behzadmehr, A.</au><au>Sarvari, S.M.H.</au><au>Mansouri, S.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation of subcooled flow boiling of a nanofluid</atitle><jtitle>International journal of thermal sciences</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>64</volume><spage>232</spage><epage>239</epage><pages>232-239</pages><issn>1290-0729</issn><eissn>1778-4166</eissn><abstract>Subcooled flow boiling of a nanofluid consisting of water and Al2O3 (dp = 30 nm) has been investigated numerically using two phase mixture model. Numerical predictions are compared to the previously published experimental works for pure water and alumina nanofluid and a good agreement is realized. It is observed that the convective heat transfer coefficient for a nanofluid in subcooled flow boiling is higher than that of the base fluid. Heat transfer coefficient increases with increasing of nanoparticles concentration. However, the effect of nanoparticle concentration on the heat transfer coefficient in the case of high inlet velocity is not significant. On the other hand, in subcooled flow boiling, decreasing the inlet mass flow rate can cause to decrease or increase the heat transfer coefficient which depends on the effect of forced convection and latent heat transport on the overall heat transfer coefficient. ► Subcooled flow boiling of a nanofluid is studied two phase mixture model. ► Convective heat transfer coefficient of nanofluid is higher than the base fluid. ► Different heat transfer mechanisms involves on the overall heat transfer coefficient. ► Increasing the inlet mass flow rate, heat transfer coefficient may increase or decrease.</abstract><cop>Kidlington</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.ijthermalsci.2012.08.008</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1290-0729
ispartof International journal of thermal sciences, 2013-02, Vol.64, p.232-239
issn 1290-0729
1778-4166
language eng
recordid cdi_proquest_miscellaneous_1671506296
source Access via ScienceDirect (Elsevier)
subjects Aluminum oxide
Applied sciences
Boiling
Chemistry
Colloidal state and disperse state
Condensed matter: structure, mechanical and thermal properties
Energy
Energy. Thermal use of fuels
Exact sciences and technology
General and physical chemistry
Heat transfer
Heat transfer coefficients
Mathematical models
Mixture model
Nanocomposites
Nanofluid
Nanofluids
Nanomaterials
Nanoparticles
Nanostructure
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Physics
Simulation
Subcooled flow boiling
Theoretical studies. Data and constants. Metering
Thermal properties of condensed matter
Thermal properties of small particles, nanocrystals, nanotubes
title Numerical investigation of subcooled flow boiling of a nanofluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T00%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation%20of%20subcooled%20flow%20boiling%20of%20a%20nanofluid&rft.jtitle=International%20journal%20of%20thermal%20sciences&rft.au=Abedini,%20E.&rft.date=2013-02-01&rft.volume=64&rft.spage=232&rft.epage=239&rft.pages=232-239&rft.issn=1290-0729&rft.eissn=1778-4166&rft_id=info:doi/10.1016/j.ijthermalsci.2012.08.008&rft_dat=%3Cproquest_cross%3E1671506296%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283670347&rft_id=info:pmid/&rft_els_id=S1290072912002323&rfr_iscdi=true