A new semi-analytical solution for inertial waves in a rectangular parallelepiped
A study of inertial gyroscopic waves in a rotating homogeneous fluid is undertaken both theoretically and numerically. A novel approach is presented to construct a semi-analytical solution of a linear three-dimensional fluid flow in a rotating rectangular parallelepiped bounded by solid walls. The t...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2013-12, Vol.25 (12), p.148-181 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 181 |
---|---|
container_issue | 12 |
container_start_page | 148 |
container_title | Physics of fluids (1994) |
container_volume | 25 |
creator | Nurijanyan, S Bokhove, O Maas, LRM |
description | A study of inertial gyroscopic waves in a rotating homogeneous fluid is undertaken both theoretically and numerically. A novel approach is presented to construct a semi-analytical solution of a linear three-dimensional fluid flow in a rotating rectangular parallelepiped bounded by solid walls. The three-dimensional solution is expanded in vertical modes to reduce the dynamics to the horizontal plane. On this horizontal plane, the two dimensional solution is constructed via superposition of "inertial" analogs of surface Poincare and Kelvin waves reflecting from the walls. The infinite sum of inertial Poincare waves has to cancel the normal flow of two inertial Kelvin waves near the boundaries. The wave system corresponding to every vertical mode results in an eigenvalue problem. Corresponding computations for rotationally modified surface gravity waves are in agreement with numerical values obtained by Taylor. |
doi_str_mv | 10.1063/1.4837576 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671504211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671504211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-6c2161baaac694adf430fee1b3b31403da04784544922328e035b14421e1c75c3</originalsourceid><addsrcrecordid>eNqF0U1LAzEQBuBFFKzVg_8g4EUPWzNJNtk9luIXFETQc5ims5KS7q7JrqX_3pX25MXTfPAwh3mz7Br4DLiW9zBTpTSF0SfZBHhZ5UZrffrbG55rLeE8u0hpwzmXldCT7G3OGtqxRFufY4Nh33uHgaU2DL1vG1a3kfmGYu_H7Q6_KY0jQxbJ9dh8DgEj6zBiCBSo8x2tL7OzGkOiq2OdZh-PD--L53z5-vSymC9zJ4uyz7UToGGFiE5XCte1krwmgpVcSVBcrpErU6pCqUoIKUrisliBUgIInCmcnGa3h7tdbL8GSr3d-uQoBGyoHZIFbaDgo4f_aTFaXlVajfTmD920Qxwfk6wAYYwuC6hGdXdQLrYpRaptF_0W494Ct785WLDHHOQPiWt4Gw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127768519</pqid></control><display><type>article</type><title>A new semi-analytical solution for inertial waves in a rectangular parallelepiped</title><source>American Institute of Physics (AIP) Journals</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Nurijanyan, S ; Bokhove, O ; Maas, LRM</creator><creatorcontrib>Nurijanyan, S ; Bokhove, O ; Maas, LRM</creatorcontrib><description>A study of inertial gyroscopic waves in a rotating homogeneous fluid is undertaken both theoretically and numerically. A novel approach is presented to construct a semi-analytical solution of a linear three-dimensional fluid flow in a rotating rectangular parallelepiped bounded by solid walls. The three-dimensional solution is expanded in vertical modes to reduce the dynamics to the horizontal plane. On this horizontal plane, the two dimensional solution is constructed via superposition of "inertial" analogs of surface Poincare and Kelvin waves reflecting from the walls. The infinite sum of inertial Poincare waves has to cancel the normal flow of two inertial Kelvin waves near the boundaries. The wave system corresponding to every vertical mode results in an eigenvalue problem. Corresponding computations for rotationally modified surface gravity waves are in agreement with numerical values obtained by Taylor.</description><identifier>ISSN: 1070-6631</identifier><identifier>ISSN: 0031-9171</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.4837576</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computational fluid dynamics ; Fluid dynamics ; Fluid flow ; Fluids ; Inertial ; Mathematical models ; Oscillations ; Parallelepipeds ; Physics ; Rotating</subject><ispartof>Physics of fluids (1994), 2013-12, Vol.25 (12), p.148-181</ispartof><rights>Copyright American Institute of Physics Dec 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-6c2161baaac694adf430fee1b3b31403da04784544922328e035b14421e1c75c3</citedby><cites>FETCH-LOGICAL-c358t-6c2161baaac694adf430fee1b3b31403da04784544922328e035b14421e1c75c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nurijanyan, S</creatorcontrib><creatorcontrib>Bokhove, O</creatorcontrib><creatorcontrib>Maas, LRM</creatorcontrib><title>A new semi-analytical solution for inertial waves in a rectangular parallelepiped</title><title>Physics of fluids (1994)</title><description>A study of inertial gyroscopic waves in a rotating homogeneous fluid is undertaken both theoretically and numerically. A novel approach is presented to construct a semi-analytical solution of a linear three-dimensional fluid flow in a rotating rectangular parallelepiped bounded by solid walls. The three-dimensional solution is expanded in vertical modes to reduce the dynamics to the horizontal plane. On this horizontal plane, the two dimensional solution is constructed via superposition of "inertial" analogs of surface Poincare and Kelvin waves reflecting from the walls. The infinite sum of inertial Poincare waves has to cancel the normal flow of two inertial Kelvin waves near the boundaries. The wave system corresponding to every vertical mode results in an eigenvalue problem. Corresponding computations for rotationally modified surface gravity waves are in agreement with numerical values obtained by Taylor.</description><subject>Computational fluid dynamics</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Inertial</subject><subject>Mathematical models</subject><subject>Oscillations</subject><subject>Parallelepipeds</subject><subject>Physics</subject><subject>Rotating</subject><issn>1070-6631</issn><issn>0031-9171</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0U1LAzEQBuBFFKzVg_8g4EUPWzNJNtk9luIXFETQc5ims5KS7q7JrqX_3pX25MXTfPAwh3mz7Br4DLiW9zBTpTSF0SfZBHhZ5UZrffrbG55rLeE8u0hpwzmXldCT7G3OGtqxRFufY4Nh33uHgaU2DL1vG1a3kfmGYu_H7Q6_KY0jQxbJ9dh8DgEj6zBiCBSo8x2tL7OzGkOiq2OdZh-PD--L53z5-vSymC9zJ4uyz7UToGGFiE5XCte1krwmgpVcSVBcrpErU6pCqUoIKUrisliBUgIInCmcnGa3h7tdbL8GSr3d-uQoBGyoHZIFbaDgo4f_aTFaXlVajfTmD920Qxwfk6wAYYwuC6hGdXdQLrYpRaptF_0W494Ct785WLDHHOQPiWt4Gw</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Nurijanyan, S</creator><creator>Bokhove, O</creator><creator>Maas, LRM</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7U5</scope></search><sort><creationdate>20131201</creationdate><title>A new semi-analytical solution for inertial waves in a rectangular parallelepiped</title><author>Nurijanyan, S ; Bokhove, O ; Maas, LRM</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-6c2161baaac694adf430fee1b3b31403da04784544922328e035b14421e1c75c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computational fluid dynamics</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Inertial</topic><topic>Mathematical models</topic><topic>Oscillations</topic><topic>Parallelepipeds</topic><topic>Physics</topic><topic>Rotating</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nurijanyan, S</creatorcontrib><creatorcontrib>Bokhove, O</creatorcontrib><creatorcontrib>Maas, LRM</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nurijanyan, S</au><au>Bokhove, O</au><au>Maas, LRM</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new semi-analytical solution for inertial waves in a rectangular parallelepiped</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>25</volume><issue>12</issue><spage>148</spage><epage>181</epage><pages>148-181</pages><issn>1070-6631</issn><issn>0031-9171</issn><eissn>1089-7666</eissn><abstract>A study of inertial gyroscopic waves in a rotating homogeneous fluid is undertaken both theoretically and numerically. A novel approach is presented to construct a semi-analytical solution of a linear three-dimensional fluid flow in a rotating rectangular parallelepiped bounded by solid walls. The three-dimensional solution is expanded in vertical modes to reduce the dynamics to the horizontal plane. On this horizontal plane, the two dimensional solution is constructed via superposition of "inertial" analogs of surface Poincare and Kelvin waves reflecting from the walls. The infinite sum of inertial Poincare waves has to cancel the normal flow of two inertial Kelvin waves near the boundaries. The wave system corresponding to every vertical mode results in an eigenvalue problem. Corresponding computations for rotationally modified surface gravity waves are in agreement with numerical values obtained by Taylor.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4837576</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2013-12, Vol.25 (12), p.148-181 |
issn | 1070-6631 0031-9171 1089-7666 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671504211 |
source | American Institute of Physics (AIP) Journals; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Computational fluid dynamics Fluid dynamics Fluid flow Fluids Inertial Mathematical models Oscillations Parallelepipeds Physics Rotating |
title | A new semi-analytical solution for inertial waves in a rectangular parallelepiped |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A09%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20semi-analytical%20solution%20for%20inertial%20waves%20in%20a%20rectangular%20parallelepiped&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Nurijanyan,%20S&rft.date=2013-12-01&rft.volume=25&rft.issue=12&rft.spage=148&rft.epage=181&rft.pages=148-181&rft.issn=1070-6631&rft.eissn=1089-7666&rft_id=info:doi/10.1063/1.4837576&rft_dat=%3Cproquest_cross%3E1671504211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127768519&rft_id=info:pmid/&rfr_iscdi=true |