Guided wave damage characterisation in beams utilising probabilistic optimisation

This paper introduces a probabilistic optimisation approach to the characterisation of damage in beams using guided waves. The proposed methodology not only determines the multivariate damage characteristics, but also quantifies the associated uncertainties of the predicted values, thus providing es...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering structures 2009-12, Vol.31 (12), p.2842-2850
Hauptverfasser: Ng, C.T., Veidt, M., Lam, H.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2850
container_issue 12
container_start_page 2842
container_title Engineering structures
container_volume 31
creator Ng, C.T.
Veidt, M.
Lam, H.F.
description This paper introduces a probabilistic optimisation approach to the characterisation of damage in beams using guided waves. The proposed methodology not only determines the multivariate damage characteristics, but also quantifies the associated uncertainties of the predicted values, thus providing essential information for making decisions on necessary remedial work. The damage location, length and depth and the Young’s modulus of the material are treated as unknown model parameters. Characterisation is achieved by applying a two-stage optimisation process that uses simulated annealing to guarantee that the solution is close to the global optimum, followed by a standard simplex search method that maximises the probability density function of a damage scenario conditional on the measurement data. The proposed methodology is applied to characterise laminar damage and is verified through a comprehensive series of numerical case studies that use spectral finite element wave propagation modelling with the consideration of both measurement noise and material uncertainty. The methodology is accurate and robust, and successfully detects damage even when the fault is close to the end of the beam and its length and depth are small. The particularly valuable feature of the proposed methodology is its ability to quantify the uncertainties associated with the damage characterisation results. The effects of measurement noise level, damage location, length and depth on the uncertainties in damage detection results are studied and discussed in detail.
doi_str_mv 10.1016/j.engstruct.2009.07.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671502315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141029609002399</els_id><sourcerecordid>1671502315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-7fc1fe3a71367f8f1c31ab3f369316cd616e68aade82ff8722353f0823d71f653</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKufwb0IXnadSWyyPYr4DwQR9Bym2UlN2e7WJKv47d3S4tXTY-A38948Ic4RKgTUV6uKu2XKcXC5kgDzCkw1yoGYYG1UaZRUh2ICeI0lyLk-FicprQBA1jVMxOvDEBpuim_64qKhNS25cB8UyWWOIVEOfVeErlgwrVMx5NCGFLplsYn9ghbbKQdX9Jsc1nv6VBx5ahOf7XUq3u_v3m4fy-eXh6fbm-fSXUuTS-MdelZkUGnja49OIS2UV3quULtGo2ZdEzVcS-9rI6WaKQ-1VI1Br2dqKi53d8conwOnbMcEjtuWOu6HZFEbnIFUuEXNDnWxTymyt5sY1hR_LILdlmhX9q9Euy3RgrGjjJsXexNKjlofqXMh_a1LifMZKBi5mx3H48dfgaNNLnDnuAmRx5tNH_71-gWrYY2y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671502315</pqid></control><display><type>article</type><title>Guided wave damage characterisation in beams utilising probabilistic optimisation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ng, C.T. ; Veidt, M. ; Lam, H.F.</creator><creatorcontrib>Ng, C.T. ; Veidt, M. ; Lam, H.F.</creatorcontrib><description>This paper introduces a probabilistic optimisation approach to the characterisation of damage in beams using guided waves. The proposed methodology not only determines the multivariate damage characteristics, but also quantifies the associated uncertainties of the predicted values, thus providing essential information for making decisions on necessary remedial work. The damage location, length and depth and the Young’s modulus of the material are treated as unknown model parameters. Characterisation is achieved by applying a two-stage optimisation process that uses simulated annealing to guarantee that the solution is close to the global optimum, followed by a standard simplex search method that maximises the probability density function of a damage scenario conditional on the measurement data. The proposed methodology is applied to characterise laminar damage and is verified through a comprehensive series of numerical case studies that use spectral finite element wave propagation modelling with the consideration of both measurement noise and material uncertainty. The methodology is accurate and robust, and successfully detects damage even when the fault is close to the end of the beam and its length and depth are small. The particularly valuable feature of the proposed methodology is its ability to quantify the uncertainties associated with the damage characterisation results. The effects of measurement noise level, damage location, length and depth on the uncertainties in damage detection results are studied and discussed in detail.</description><identifier>ISSN: 0141-0296</identifier><identifier>EISSN: 1873-7323</identifier><identifier>DOI: 10.1016/j.engstruct.2009.07.009</identifier><identifier>CODEN: ENSTDF</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Bayesian statistical framework ; Beam damage characterisation ; Beams (radiation) ; Building failures (cracks, physical changes, etc.) ; Buildings. Public works ; Computation methods. Tables. Charts ; Damage ; Durability. Pathology. Repairing. Maintenance ; Exact sciences and technology ; Guided wave ; Mathematical models ; Methodology ; Optimization ; Position (location) ; Probabilistic optimisation ; Probability theory ; Structural analysis. Stresses ; Uncertainty</subject><ispartof>Engineering structures, 2009-12, Vol.31 (12), p.2842-2850</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-7fc1fe3a71367f8f1c31ab3f369316cd616e68aade82ff8722353f0823d71f653</citedby><cites>FETCH-LOGICAL-c427t-7fc1fe3a71367f8f1c31ab3f369316cd616e68aade82ff8722353f0823d71f653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engstruct.2009.07.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22195030$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ng, C.T.</creatorcontrib><creatorcontrib>Veidt, M.</creatorcontrib><creatorcontrib>Lam, H.F.</creatorcontrib><title>Guided wave damage characterisation in beams utilising probabilistic optimisation</title><title>Engineering structures</title><description>This paper introduces a probabilistic optimisation approach to the characterisation of damage in beams using guided waves. The proposed methodology not only determines the multivariate damage characteristics, but also quantifies the associated uncertainties of the predicted values, thus providing essential information for making decisions on necessary remedial work. The damage location, length and depth and the Young’s modulus of the material are treated as unknown model parameters. Characterisation is achieved by applying a two-stage optimisation process that uses simulated annealing to guarantee that the solution is close to the global optimum, followed by a standard simplex search method that maximises the probability density function of a damage scenario conditional on the measurement data. The proposed methodology is applied to characterise laminar damage and is verified through a comprehensive series of numerical case studies that use spectral finite element wave propagation modelling with the consideration of both measurement noise and material uncertainty. The methodology is accurate and robust, and successfully detects damage even when the fault is close to the end of the beam and its length and depth are small. The particularly valuable feature of the proposed methodology is its ability to quantify the uncertainties associated with the damage characterisation results. The effects of measurement noise level, damage location, length and depth on the uncertainties in damage detection results are studied and discussed in detail.</description><subject>Applied sciences</subject><subject>Bayesian statistical framework</subject><subject>Beam damage characterisation</subject><subject>Beams (radiation)</subject><subject>Building failures (cracks, physical changes, etc.)</subject><subject>Buildings. Public works</subject><subject>Computation methods. Tables. Charts</subject><subject>Damage</subject><subject>Durability. Pathology. Repairing. Maintenance</subject><subject>Exact sciences and technology</subject><subject>Guided wave</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Optimization</subject><subject>Position (location)</subject><subject>Probabilistic optimisation</subject><subject>Probability theory</subject><subject>Structural analysis. Stresses</subject><subject>Uncertainty</subject><issn>0141-0296</issn><issn>1873-7323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKufwb0IXnadSWyyPYr4DwQR9Bym2UlN2e7WJKv47d3S4tXTY-A38948Ic4RKgTUV6uKu2XKcXC5kgDzCkw1yoGYYG1UaZRUh2ICeI0lyLk-FicprQBA1jVMxOvDEBpuim_64qKhNS25cB8UyWWOIVEOfVeErlgwrVMx5NCGFLplsYn9ghbbKQdX9Jsc1nv6VBx5ahOf7XUq3u_v3m4fy-eXh6fbm-fSXUuTS-MdelZkUGnja49OIS2UV3quULtGo2ZdEzVcS-9rI6WaKQ-1VI1Br2dqKi53d8conwOnbMcEjtuWOu6HZFEbnIFUuEXNDnWxTymyt5sY1hR_LILdlmhX9q9Euy3RgrGjjJsXexNKjlofqXMh_a1LifMZKBi5mx3H48dfgaNNLnDnuAmRx5tNH_71-gWrYY2y</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Ng, C.T.</creator><creator>Veidt, M.</creator><creator>Lam, H.F.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20091201</creationdate><title>Guided wave damage characterisation in beams utilising probabilistic optimisation</title><author>Ng, C.T. ; Veidt, M. ; Lam, H.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-7fc1fe3a71367f8f1c31ab3f369316cd616e68aade82ff8722353f0823d71f653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Bayesian statistical framework</topic><topic>Beam damage characterisation</topic><topic>Beams (radiation)</topic><topic>Building failures (cracks, physical changes, etc.)</topic><topic>Buildings. Public works</topic><topic>Computation methods. Tables. Charts</topic><topic>Damage</topic><topic>Durability. Pathology. Repairing. Maintenance</topic><topic>Exact sciences and technology</topic><topic>Guided wave</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Optimization</topic><topic>Position (location)</topic><topic>Probabilistic optimisation</topic><topic>Probability theory</topic><topic>Structural analysis. Stresses</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ng, C.T.</creatorcontrib><creatorcontrib>Veidt, M.</creatorcontrib><creatorcontrib>Lam, H.F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ng, C.T.</au><au>Veidt, M.</au><au>Lam, H.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guided wave damage characterisation in beams utilising probabilistic optimisation</atitle><jtitle>Engineering structures</jtitle><date>2009-12-01</date><risdate>2009</risdate><volume>31</volume><issue>12</issue><spage>2842</spage><epage>2850</epage><pages>2842-2850</pages><issn>0141-0296</issn><eissn>1873-7323</eissn><coden>ENSTDF</coden><abstract>This paper introduces a probabilistic optimisation approach to the characterisation of damage in beams using guided waves. The proposed methodology not only determines the multivariate damage characteristics, but also quantifies the associated uncertainties of the predicted values, thus providing essential information for making decisions on necessary remedial work. The damage location, length and depth and the Young’s modulus of the material are treated as unknown model parameters. Characterisation is achieved by applying a two-stage optimisation process that uses simulated annealing to guarantee that the solution is close to the global optimum, followed by a standard simplex search method that maximises the probability density function of a damage scenario conditional on the measurement data. The proposed methodology is applied to characterise laminar damage and is verified through a comprehensive series of numerical case studies that use spectral finite element wave propagation modelling with the consideration of both measurement noise and material uncertainty. The methodology is accurate and robust, and successfully detects damage even when the fault is close to the end of the beam and its length and depth are small. The particularly valuable feature of the proposed methodology is its ability to quantify the uncertainties associated with the damage characterisation results. The effects of measurement noise level, damage location, length and depth on the uncertainties in damage detection results are studied and discussed in detail.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engstruct.2009.07.009</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0141-0296
ispartof Engineering structures, 2009-12, Vol.31 (12), p.2842-2850
issn 0141-0296
1873-7323
language eng
recordid cdi_proquest_miscellaneous_1671502315
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Bayesian statistical framework
Beam damage characterisation
Beams (radiation)
Building failures (cracks, physical changes, etc.)
Buildings. Public works
Computation methods. Tables. Charts
Damage
Durability. Pathology. Repairing. Maintenance
Exact sciences and technology
Guided wave
Mathematical models
Methodology
Optimization
Position (location)
Probabilistic optimisation
Probability theory
Structural analysis. Stresses
Uncertainty
title Guided wave damage characterisation in beams utilising probabilistic optimisation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A16%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guided%20wave%20damage%20characterisation%20in%20beams%20utilising%20probabilistic%20optimisation&rft.jtitle=Engineering%20structures&rft.au=Ng,%20C.T.&rft.date=2009-12-01&rft.volume=31&rft.issue=12&rft.spage=2842&rft.epage=2850&rft.pages=2842-2850&rft.issn=0141-0296&rft.eissn=1873-7323&rft.coden=ENSTDF&rft_id=info:doi/10.1016/j.engstruct.2009.07.009&rft_dat=%3Cproquest_cross%3E1671502315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671502315&rft_id=info:pmid/&rft_els_id=S0141029609002399&rfr_iscdi=true