Linear seakeeping and added resistance analysis by means of body-fixed coordinate system

This paper presents an alternative formulation of the boundary value problem for linear seakeeping and added resistance analysis based on a body-fixed coordinate system. The formulation does not involve higher-order derivatives of the steady velocity potential on the right-hand side of the body-boun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of marine science and technology 2012-12, Vol.17 (4), p.493-510
Hauptverfasser: Shao, Yan-Lin, Faltinsen, Odd M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 510
container_issue 4
container_start_page 493
container_title Journal of marine science and technology
container_volume 17
creator Shao, Yan-Lin
Faltinsen, Odd M.
description This paper presents an alternative formulation of the boundary value problem for linear seakeeping and added resistance analysis based on a body-fixed coordinate system. The formulation does not involve higher-order derivatives of the steady velocity potential on the right-hand side of the body-boundary condition, i.e., the so-called m j -terms in the traditional formulation when an inertial coordinate system is applied. Numerical studies are made for a modified Wigley I hull, a Series 60 ship with block coefficient 0.7, and the S175 container ship for moderate forward speeds where it is thought appropriate to use the double-body flow as basis flow. The presented results for the forced heave and pitch oscillations, motion responses, and added resistance in head-sea waves show good agreement with experiments and some other numerical studies. A Neumann–Kelvin formulation is shown to give less satisfactory results, in particular for coupled heave and pitch added mass and damping coefficients.
doi_str_mv 10.1007/s00773-012-0185-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671501827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A714876494</galeid><sourcerecordid>A714876494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-e0b071b6e31621ff1c0e293dc6c6fa6619d69dbb270ea0beb8ef1728a4c526ac3</originalsourceid><addsrcrecordid>eNqFkUGLFDEQhRtRcFz9Ad4CXrz0WpVOJ93HZdFVGPCi4C2kk8qQtTsZkx6w_70Z2oMIIiEpUnzvUdRrmtcItwig3pX6qK4F5PUOfbs9aQ4oOtUOHLunzQFGMbSCD_C8eVHKIwCqfoRD8-0YIpnMCpnvROcQT8xEx4xz5FimEspqoqXaNPNWf2za2EImFpY8m5LbWh9-VtSmlF2IZiVWtrLS8rJ55s1c6NXvetN8_fD-y_3H9vj54dP93bG1ooe1JZhA4SSpQ8nRe7RAfOyclVZ6IyWOTo5umrgCMjDRNJBHxQcjbM-lsd1N83b3Pef040Jl1UsolubZREqXolEq7OtKuPo_KjoB2CshKvrmL_QxXXLdQaW4lJL3HfSVut2pk5lJh-jTmo2tx9ESbIrkQ-3fKRSDkmK82uIusDmVksnrcw6LyZtG0Ncc9Z6jrjnqa456qxq-a0pl44nyH6P8U_QLgMKgFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266625305</pqid></control><display><type>article</type><title>Linear seakeeping and added resistance analysis by means of body-fixed coordinate system</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shao, Yan-Lin ; Faltinsen, Odd M.</creator><creatorcontrib>Shao, Yan-Lin ; Faltinsen, Odd M.</creatorcontrib><description>This paper presents an alternative formulation of the boundary value problem for linear seakeeping and added resistance analysis based on a body-fixed coordinate system. The formulation does not involve higher-order derivatives of the steady velocity potential on the right-hand side of the body-boundary condition, i.e., the so-called m j -terms in the traditional formulation when an inertial coordinate system is applied. Numerical studies are made for a modified Wigley I hull, a Series 60 ship with block coefficient 0.7, and the S175 container ship for moderate forward speeds where it is thought appropriate to use the double-body flow as basis flow. The presented results for the forced heave and pitch oscillations, motion responses, and added resistance in head-sea waves show good agreement with experiments and some other numerical studies. A Neumann–Kelvin formulation is shown to give less satisfactory results, in particular for coupled heave and pitch added mass and damping coefficients.</description><identifier>ISSN: 0948-4280</identifier><identifier>EISSN: 1437-8213</identifier><identifier>DOI: 10.1007/s00773-012-0185-y</identifier><language>eng</language><publisher>Japan: Springer Japan</publisher><subject>Analysis ; Automotive Engineering ; Boundary conditions ; Boundary value problems ; Coefficients ; Container ships ; Derivatives ; Engineering ; Engineering Design ; Engineering Fluid Dynamics ; Heave ; Marine ; Mathematical analysis ; Mathematical models ; Mechanical Engineering ; Numerical analysis ; Offshore Engineering ; Original Article ; Oscillations ; Seakeeping ; Ships ; Velocity ; Velocity potential</subject><ispartof>Journal of marine science and technology, 2012-12, Vol.17 (4), p.493-510</ispartof><rights>JASNAOE 2012</rights><rights>COPYRIGHT 2012 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-e0b071b6e31621ff1c0e293dc6c6fa6619d69dbb270ea0beb8ef1728a4c526ac3</citedby><cites>FETCH-LOGICAL-c450t-e0b071b6e31621ff1c0e293dc6c6fa6619d69dbb270ea0beb8ef1728a4c526ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00773-012-0185-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00773-012-0185-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Shao, Yan-Lin</creatorcontrib><creatorcontrib>Faltinsen, Odd M.</creatorcontrib><title>Linear seakeeping and added resistance analysis by means of body-fixed coordinate system</title><title>Journal of marine science and technology</title><addtitle>J Mar Sci Technol</addtitle><description>This paper presents an alternative formulation of the boundary value problem for linear seakeeping and added resistance analysis based on a body-fixed coordinate system. The formulation does not involve higher-order derivatives of the steady velocity potential on the right-hand side of the body-boundary condition, i.e., the so-called m j -terms in the traditional formulation when an inertial coordinate system is applied. Numerical studies are made for a modified Wigley I hull, a Series 60 ship with block coefficient 0.7, and the S175 container ship for moderate forward speeds where it is thought appropriate to use the double-body flow as basis flow. The presented results for the forced heave and pitch oscillations, motion responses, and added resistance in head-sea waves show good agreement with experiments and some other numerical studies. A Neumann–Kelvin formulation is shown to give less satisfactory results, in particular for coupled heave and pitch added mass and damping coefficients.</description><subject>Analysis</subject><subject>Automotive Engineering</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Coefficients</subject><subject>Container ships</subject><subject>Derivatives</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Engineering Fluid Dynamics</subject><subject>Heave</subject><subject>Marine</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Numerical analysis</subject><subject>Offshore Engineering</subject><subject>Original Article</subject><subject>Oscillations</subject><subject>Seakeeping</subject><subject>Ships</subject><subject>Velocity</subject><subject>Velocity potential</subject><issn>0948-4280</issn><issn>1437-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkUGLFDEQhRtRcFz9Ad4CXrz0WpVOJ93HZdFVGPCi4C2kk8qQtTsZkx6w_70Z2oMIIiEpUnzvUdRrmtcItwig3pX6qK4F5PUOfbs9aQ4oOtUOHLunzQFGMbSCD_C8eVHKIwCqfoRD8-0YIpnMCpnvROcQT8xEx4xz5FimEspqoqXaNPNWf2za2EImFpY8m5LbWh9-VtSmlF2IZiVWtrLS8rJ55s1c6NXvetN8_fD-y_3H9vj54dP93bG1ooe1JZhA4SSpQ8nRe7RAfOyclVZ6IyWOTo5umrgCMjDRNJBHxQcjbM-lsd1N83b3Pef040Jl1UsolubZREqXolEq7OtKuPo_KjoB2CshKvrmL_QxXXLdQaW4lJL3HfSVut2pk5lJh-jTmo2tx9ESbIrkQ-3fKRSDkmK82uIusDmVksnrcw6LyZtG0Ncc9Z6jrjnqa456qxq-a0pl44nyH6P8U_QLgMKgFw</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Shao, Yan-Lin</creator><creator>Faltinsen, Odd M.</creator><general>Springer Japan</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20121201</creationdate><title>Linear seakeeping and added resistance analysis by means of body-fixed coordinate system</title><author>Shao, Yan-Lin ; Faltinsen, Odd M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-e0b071b6e31621ff1c0e293dc6c6fa6619d69dbb270ea0beb8ef1728a4c526ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Automotive Engineering</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Coefficients</topic><topic>Container ships</topic><topic>Derivatives</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Engineering Fluid Dynamics</topic><topic>Heave</topic><topic>Marine</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Numerical analysis</topic><topic>Offshore Engineering</topic><topic>Original Article</topic><topic>Oscillations</topic><topic>Seakeeping</topic><topic>Ships</topic><topic>Velocity</topic><topic>Velocity potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Yan-Lin</creatorcontrib><creatorcontrib>Faltinsen, Odd M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of marine science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Yan-Lin</au><au>Faltinsen, Odd M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear seakeeping and added resistance analysis by means of body-fixed coordinate system</atitle><jtitle>Journal of marine science and technology</jtitle><stitle>J Mar Sci Technol</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>17</volume><issue>4</issue><spage>493</spage><epage>510</epage><pages>493-510</pages><issn>0948-4280</issn><eissn>1437-8213</eissn><abstract>This paper presents an alternative formulation of the boundary value problem for linear seakeeping and added resistance analysis based on a body-fixed coordinate system. The formulation does not involve higher-order derivatives of the steady velocity potential on the right-hand side of the body-boundary condition, i.e., the so-called m j -terms in the traditional formulation when an inertial coordinate system is applied. Numerical studies are made for a modified Wigley I hull, a Series 60 ship with block coefficient 0.7, and the S175 container ship for moderate forward speeds where it is thought appropriate to use the double-body flow as basis flow. The presented results for the forced heave and pitch oscillations, motion responses, and added resistance in head-sea waves show good agreement with experiments and some other numerical studies. A Neumann–Kelvin formulation is shown to give less satisfactory results, in particular for coupled heave and pitch added mass and damping coefficients.</abstract><cop>Japan</cop><pub>Springer Japan</pub><doi>10.1007/s00773-012-0185-y</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0948-4280
ispartof Journal of marine science and technology, 2012-12, Vol.17 (4), p.493-510
issn 0948-4280
1437-8213
language eng
recordid cdi_proquest_miscellaneous_1671501827
source SpringerLink Journals - AutoHoldings
subjects Analysis
Automotive Engineering
Boundary conditions
Boundary value problems
Coefficients
Container ships
Derivatives
Engineering
Engineering Design
Engineering Fluid Dynamics
Heave
Marine
Mathematical analysis
Mathematical models
Mechanical Engineering
Numerical analysis
Offshore Engineering
Original Article
Oscillations
Seakeeping
Ships
Velocity
Velocity potential
title Linear seakeeping and added resistance analysis by means of body-fixed coordinate system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A43%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20seakeeping%20and%20added%20resistance%20analysis%20by%20means%20of%20body-fixed%20coordinate%20system&rft.jtitle=Journal%20of%20marine%20science%20and%20technology&rft.au=Shao,%20Yan-Lin&rft.date=2012-12-01&rft.volume=17&rft.issue=4&rft.spage=493&rft.epage=510&rft.pages=493-510&rft.issn=0948-4280&rft.eissn=1437-8213&rft_id=info:doi/10.1007/s00773-012-0185-y&rft_dat=%3Cgale_proqu%3EA714876494%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266625305&rft_id=info:pmid/&rft_galeid=A714876494&rfr_iscdi=true