Linear seakeeping and added resistance analysis by means of body-fixed coordinate system
This paper presents an alternative formulation of the boundary value problem for linear seakeeping and added resistance analysis based on a body-fixed coordinate system. The formulation does not involve higher-order derivatives of the steady velocity potential on the right-hand side of the body-boun...
Gespeichert in:
Veröffentlicht in: | Journal of marine science and technology 2012-12, Vol.17 (4), p.493-510 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 510 |
---|---|
container_issue | 4 |
container_start_page | 493 |
container_title | Journal of marine science and technology |
container_volume | 17 |
creator | Shao, Yan-Lin Faltinsen, Odd M. |
description | This paper presents an alternative formulation of the boundary value problem for linear seakeeping and added resistance analysis based on a body-fixed coordinate system. The formulation does not involve higher-order derivatives of the steady velocity potential on the right-hand side of the body-boundary condition, i.e., the so-called
m
j
-terms in the traditional formulation when an inertial coordinate system is applied. Numerical studies are made for a modified Wigley I hull, a Series 60 ship with block coefficient 0.7, and the S175 container ship for moderate forward speeds where it is thought appropriate to use the double-body flow as basis flow. The presented results for the forced heave and pitch oscillations, motion responses, and added resistance in head-sea waves show good agreement with experiments and some other numerical studies. A Neumann–Kelvin formulation is shown to give less satisfactory results, in particular for coupled heave and pitch added mass and damping coefficients. |
doi_str_mv | 10.1007/s00773-012-0185-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671501827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A714876494</galeid><sourcerecordid>A714876494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-e0b071b6e31621ff1c0e293dc6c6fa6619d69dbb270ea0beb8ef1728a4c526ac3</originalsourceid><addsrcrecordid>eNqFkUGLFDEQhRtRcFz9Ad4CXrz0WpVOJ93HZdFVGPCi4C2kk8qQtTsZkx6w_70Z2oMIIiEpUnzvUdRrmtcItwig3pX6qK4F5PUOfbs9aQ4oOtUOHLunzQFGMbSCD_C8eVHKIwCqfoRD8-0YIpnMCpnvROcQT8xEx4xz5FimEspqoqXaNPNWf2za2EImFpY8m5LbWh9-VtSmlF2IZiVWtrLS8rJ55s1c6NXvetN8_fD-y_3H9vj54dP93bG1ooe1JZhA4SSpQ8nRe7RAfOyclVZ6IyWOTo5umrgCMjDRNJBHxQcjbM-lsd1N83b3Pef040Jl1UsolubZREqXolEq7OtKuPo_KjoB2CshKvrmL_QxXXLdQaW4lJL3HfSVut2pk5lJh-jTmo2tx9ESbIrkQ-3fKRSDkmK82uIusDmVksnrcw6LyZtG0Ncc9Z6jrjnqa456qxq-a0pl44nyH6P8U_QLgMKgFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266625305</pqid></control><display><type>article</type><title>Linear seakeeping and added resistance analysis by means of body-fixed coordinate system</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shao, Yan-Lin ; Faltinsen, Odd M.</creator><creatorcontrib>Shao, Yan-Lin ; Faltinsen, Odd M.</creatorcontrib><description>This paper presents an alternative formulation of the boundary value problem for linear seakeeping and added resistance analysis based on a body-fixed coordinate system. The formulation does not involve higher-order derivatives of the steady velocity potential on the right-hand side of the body-boundary condition, i.e., the so-called
m
j
-terms in the traditional formulation when an inertial coordinate system is applied. Numerical studies are made for a modified Wigley I hull, a Series 60 ship with block coefficient 0.7, and the S175 container ship for moderate forward speeds where it is thought appropriate to use the double-body flow as basis flow. The presented results for the forced heave and pitch oscillations, motion responses, and added resistance in head-sea waves show good agreement with experiments and some other numerical studies. A Neumann–Kelvin formulation is shown to give less satisfactory results, in particular for coupled heave and pitch added mass and damping coefficients.</description><identifier>ISSN: 0948-4280</identifier><identifier>EISSN: 1437-8213</identifier><identifier>DOI: 10.1007/s00773-012-0185-y</identifier><language>eng</language><publisher>Japan: Springer Japan</publisher><subject>Analysis ; Automotive Engineering ; Boundary conditions ; Boundary value problems ; Coefficients ; Container ships ; Derivatives ; Engineering ; Engineering Design ; Engineering Fluid Dynamics ; Heave ; Marine ; Mathematical analysis ; Mathematical models ; Mechanical Engineering ; Numerical analysis ; Offshore Engineering ; Original Article ; Oscillations ; Seakeeping ; Ships ; Velocity ; Velocity potential</subject><ispartof>Journal of marine science and technology, 2012-12, Vol.17 (4), p.493-510</ispartof><rights>JASNAOE 2012</rights><rights>COPYRIGHT 2012 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-e0b071b6e31621ff1c0e293dc6c6fa6619d69dbb270ea0beb8ef1728a4c526ac3</citedby><cites>FETCH-LOGICAL-c450t-e0b071b6e31621ff1c0e293dc6c6fa6619d69dbb270ea0beb8ef1728a4c526ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00773-012-0185-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00773-012-0185-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Shao, Yan-Lin</creatorcontrib><creatorcontrib>Faltinsen, Odd M.</creatorcontrib><title>Linear seakeeping and added resistance analysis by means of body-fixed coordinate system</title><title>Journal of marine science and technology</title><addtitle>J Mar Sci Technol</addtitle><description>This paper presents an alternative formulation of the boundary value problem for linear seakeeping and added resistance analysis based on a body-fixed coordinate system. The formulation does not involve higher-order derivatives of the steady velocity potential on the right-hand side of the body-boundary condition, i.e., the so-called
m
j
-terms in the traditional formulation when an inertial coordinate system is applied. Numerical studies are made for a modified Wigley I hull, a Series 60 ship with block coefficient 0.7, and the S175 container ship for moderate forward speeds where it is thought appropriate to use the double-body flow as basis flow. The presented results for the forced heave and pitch oscillations, motion responses, and added resistance in head-sea waves show good agreement with experiments and some other numerical studies. A Neumann–Kelvin formulation is shown to give less satisfactory results, in particular for coupled heave and pitch added mass and damping coefficients.</description><subject>Analysis</subject><subject>Automotive Engineering</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Coefficients</subject><subject>Container ships</subject><subject>Derivatives</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Engineering Fluid Dynamics</subject><subject>Heave</subject><subject>Marine</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Numerical analysis</subject><subject>Offshore Engineering</subject><subject>Original Article</subject><subject>Oscillations</subject><subject>Seakeeping</subject><subject>Ships</subject><subject>Velocity</subject><subject>Velocity potential</subject><issn>0948-4280</issn><issn>1437-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkUGLFDEQhRtRcFz9Ad4CXrz0WpVOJ93HZdFVGPCi4C2kk8qQtTsZkx6w_70Z2oMIIiEpUnzvUdRrmtcItwig3pX6qK4F5PUOfbs9aQ4oOtUOHLunzQFGMbSCD_C8eVHKIwCqfoRD8-0YIpnMCpnvROcQT8xEx4xz5FimEspqoqXaNPNWf2za2EImFpY8m5LbWh9-VtSmlF2IZiVWtrLS8rJ55s1c6NXvetN8_fD-y_3H9vj54dP93bG1ooe1JZhA4SSpQ8nRe7RAfOyclVZ6IyWOTo5umrgCMjDRNJBHxQcjbM-lsd1N83b3Pef040Jl1UsolubZREqXolEq7OtKuPo_KjoB2CshKvrmL_QxXXLdQaW4lJL3HfSVut2pk5lJh-jTmo2tx9ESbIrkQ-3fKRSDkmK82uIusDmVksnrcw6LyZtG0Ncc9Z6jrjnqa456qxq-a0pl44nyH6P8U_QLgMKgFw</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Shao, Yan-Lin</creator><creator>Faltinsen, Odd M.</creator><general>Springer Japan</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20121201</creationdate><title>Linear seakeeping and added resistance analysis by means of body-fixed coordinate system</title><author>Shao, Yan-Lin ; Faltinsen, Odd M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-e0b071b6e31621ff1c0e293dc6c6fa6619d69dbb270ea0beb8ef1728a4c526ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Automotive Engineering</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Coefficients</topic><topic>Container ships</topic><topic>Derivatives</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Engineering Fluid Dynamics</topic><topic>Heave</topic><topic>Marine</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Numerical analysis</topic><topic>Offshore Engineering</topic><topic>Original Article</topic><topic>Oscillations</topic><topic>Seakeeping</topic><topic>Ships</topic><topic>Velocity</topic><topic>Velocity potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Yan-Lin</creatorcontrib><creatorcontrib>Faltinsen, Odd M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of marine science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Yan-Lin</au><au>Faltinsen, Odd M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear seakeeping and added resistance analysis by means of body-fixed coordinate system</atitle><jtitle>Journal of marine science and technology</jtitle><stitle>J Mar Sci Technol</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>17</volume><issue>4</issue><spage>493</spage><epage>510</epage><pages>493-510</pages><issn>0948-4280</issn><eissn>1437-8213</eissn><abstract>This paper presents an alternative formulation of the boundary value problem for linear seakeeping and added resistance analysis based on a body-fixed coordinate system. The formulation does not involve higher-order derivatives of the steady velocity potential on the right-hand side of the body-boundary condition, i.e., the so-called
m
j
-terms in the traditional formulation when an inertial coordinate system is applied. Numerical studies are made for a modified Wigley I hull, a Series 60 ship with block coefficient 0.7, and the S175 container ship for moderate forward speeds where it is thought appropriate to use the double-body flow as basis flow. The presented results for the forced heave and pitch oscillations, motion responses, and added resistance in head-sea waves show good agreement with experiments and some other numerical studies. A Neumann–Kelvin formulation is shown to give less satisfactory results, in particular for coupled heave and pitch added mass and damping coefficients.</abstract><cop>Japan</cop><pub>Springer Japan</pub><doi>10.1007/s00773-012-0185-y</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0948-4280 |
ispartof | Journal of marine science and technology, 2012-12, Vol.17 (4), p.493-510 |
issn | 0948-4280 1437-8213 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671501827 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Automotive Engineering Boundary conditions Boundary value problems Coefficients Container ships Derivatives Engineering Engineering Design Engineering Fluid Dynamics Heave Marine Mathematical analysis Mathematical models Mechanical Engineering Numerical analysis Offshore Engineering Original Article Oscillations Seakeeping Ships Velocity Velocity potential |
title | Linear seakeeping and added resistance analysis by means of body-fixed coordinate system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A43%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20seakeeping%20and%20added%20resistance%20analysis%20by%20means%20of%20body-fixed%20coordinate%20system&rft.jtitle=Journal%20of%20marine%20science%20and%20technology&rft.au=Shao,%20Yan-Lin&rft.date=2012-12-01&rft.volume=17&rft.issue=4&rft.spage=493&rft.epage=510&rft.pages=493-510&rft.issn=0948-4280&rft.eissn=1437-8213&rft_id=info:doi/10.1007/s00773-012-0185-y&rft_dat=%3Cgale_proqu%3EA714876494%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266625305&rft_id=info:pmid/&rft_galeid=A714876494&rfr_iscdi=true |