Explicit and implicit finite difference schemes for fractional Cattaneo equation

In this paper, the numerical solution of fractional (non-integer)-order Cattaneo equation for describing anomalous diffusion has been investigated. Two finite difference schemes namely an explicit predictor–corrector and totally implicit schemes have been developed. In developing each scheme, a sepa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2010-09, Vol.229 (19), p.7042-7057
Hauptverfasser: Ghazizadeh, H.R., Maerefat, M., Azimi, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7057
container_issue 19
container_start_page 7042
container_title Journal of computational physics
container_volume 229
creator Ghazizadeh, H.R.
Maerefat, M.
Azimi, A.
description In this paper, the numerical solution of fractional (non-integer)-order Cattaneo equation for describing anomalous diffusion has been investigated. Two finite difference schemes namely an explicit predictor–corrector and totally implicit schemes have been developed. In developing each scheme, a separate formulation approach for the governing equations has been considered. The explicit predictor–corrector scheme is the fractional generalization of well-known MacCormack scheme and has been called Generalized MacCormack scheme. This scheme solves two coupled low-order equations and simultaneously computes the flux term with the main variable. Fully implicit scheme however solves a single high-order undecomposed equation. For Generalized MacCormack scheme, stability analysis has been studied through Fourier method. Through a numerical test, the experimental order of convergency of both schemes has been found. Then, the domain of applicability and some numerical properties of each scheme have been discussed.
doi_str_mv 10.1016/j.jcp.2010.05.039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671500273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999110003001</els_id><sourcerecordid>1671500273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-bbbfb7b319127c7f53cdd5b8b8882782cd8221bd141be98c24a5d92e2e7174193</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_wN1sBDcz5mY6TYIrKfUBBV3oOuRxgynTmTaZiv57M7S4dHU5l3Mf5yPkGmgFFOZ362pttxWjWdOmorU8IROgkpaMw_yUTChlUEop4ZxcpLSmlIpmJibkbfm9bYMNQ6E7V4TNUfjQhQELF7zHiJ3FItlP3GAqfB8LH7UdQt_ptljoYdAd9gXu9nrsXZIzr9uEV8c6JR-Py_fFc7l6fXpZPKxKW8_pUBpjvOGmBgmMW-6b2jrXGGGEEIwLZp1gDIyDGRiUwrKZbpxkyJADn4Gsp-T2sHcb-90e06A2IVls2_GbfVIw59Dk1LzOVjhYbexTiujVNoaNjj8KqBrpqbXK9NRIT9FGZXp55ua4Xier25y4syH9DbIaGgZAs-_-4MOc9StgVMmGEZgLEe2gXB_-ufIL_WGE5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671500273</pqid></control><display><type>article</type><title>Explicit and implicit finite difference schemes for fractional Cattaneo equation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ghazizadeh, H.R. ; Maerefat, M. ; Azimi, A.</creator><creatorcontrib>Ghazizadeh, H.R. ; Maerefat, M. ; Azimi, A.</creatorcontrib><description>In this paper, the numerical solution of fractional (non-integer)-order Cattaneo equation for describing anomalous diffusion has been investigated. Two finite difference schemes namely an explicit predictor–corrector and totally implicit schemes have been developed. In developing each scheme, a separate formulation approach for the governing equations has been considered. The explicit predictor–corrector scheme is the fractional generalization of well-known MacCormack scheme and has been called Generalized MacCormack scheme. This scheme solves two coupled low-order equations and simultaneously computes the flux term with the main variable. Fully implicit scheme however solves a single high-order undecomposed equation. For Generalized MacCormack scheme, stability analysis has been studied through Fourier method. Through a numerical test, the experimental order of convergency of both schemes has been found. Then, the domain of applicability and some numerical properties of each scheme have been discussed.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2010.05.039</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Computation ; Computational techniques ; Convergence rate ; Diffusion ; Exact sciences and technology ; Finite difference schemes ; Flux ; Fourier analysis ; Fractional Cattaneo equation ; MacCormack scheme ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Physics ; Predictor-corrector methods ; Stability</subject><ispartof>Journal of computational physics, 2010-09, Vol.229 (19), p.7042-7057</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-bbbfb7b319127c7f53cdd5b8b8882782cd8221bd141be98c24a5d92e2e7174193</citedby><cites>FETCH-LOGICAL-c360t-bbbfb7b319127c7f53cdd5b8b8882782cd8221bd141be98c24a5d92e2e7174193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2010.05.039$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23152110$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghazizadeh, H.R.</creatorcontrib><creatorcontrib>Maerefat, M.</creatorcontrib><creatorcontrib>Azimi, A.</creatorcontrib><title>Explicit and implicit finite difference schemes for fractional Cattaneo equation</title><title>Journal of computational physics</title><description>In this paper, the numerical solution of fractional (non-integer)-order Cattaneo equation for describing anomalous diffusion has been investigated. Two finite difference schemes namely an explicit predictor–corrector and totally implicit schemes have been developed. In developing each scheme, a separate formulation approach for the governing equations has been considered. The explicit predictor–corrector scheme is the fractional generalization of well-known MacCormack scheme and has been called Generalized MacCormack scheme. This scheme solves two coupled low-order equations and simultaneously computes the flux term with the main variable. Fully implicit scheme however solves a single high-order undecomposed equation. For Generalized MacCormack scheme, stability analysis has been studied through Fourier method. Through a numerical test, the experimental order of convergency of both schemes has been found. Then, the domain of applicability and some numerical properties of each scheme have been discussed.</description><subject>Computation</subject><subject>Computational techniques</subject><subject>Convergence rate</subject><subject>Diffusion</subject><subject>Exact sciences and technology</subject><subject>Finite difference schemes</subject><subject>Flux</subject><subject>Fourier analysis</subject><subject>Fractional Cattaneo equation</subject><subject>MacCormack scheme</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Predictor-corrector methods</subject><subject>Stability</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_wN1sBDcz5mY6TYIrKfUBBV3oOuRxgynTmTaZiv57M7S4dHU5l3Mf5yPkGmgFFOZ362pttxWjWdOmorU8IROgkpaMw_yUTChlUEop4ZxcpLSmlIpmJibkbfm9bYMNQ6E7V4TNUfjQhQELF7zHiJ3FItlP3GAqfB8LH7UdQt_ptljoYdAd9gXu9nrsXZIzr9uEV8c6JR-Py_fFc7l6fXpZPKxKW8_pUBpjvOGmBgmMW-6b2jrXGGGEEIwLZp1gDIyDGRiUwrKZbpxkyJADn4Gsp-T2sHcb-90e06A2IVls2_GbfVIw59Dk1LzOVjhYbexTiujVNoaNjj8KqBrpqbXK9NRIT9FGZXp55ua4Xier25y4syH9DbIaGgZAs-_-4MOc9StgVMmGEZgLEe2gXB_-ufIL_WGE5g</recordid><startdate>20100920</startdate><enddate>20100920</enddate><creator>Ghazizadeh, H.R.</creator><creator>Maerefat, M.</creator><creator>Azimi, A.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100920</creationdate><title>Explicit and implicit finite difference schemes for fractional Cattaneo equation</title><author>Ghazizadeh, H.R. ; Maerefat, M. ; Azimi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-bbbfb7b319127c7f53cdd5b8b8882782cd8221bd141be98c24a5d92e2e7174193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computation</topic><topic>Computational techniques</topic><topic>Convergence rate</topic><topic>Diffusion</topic><topic>Exact sciences and technology</topic><topic>Finite difference schemes</topic><topic>Flux</topic><topic>Fourier analysis</topic><topic>Fractional Cattaneo equation</topic><topic>MacCormack scheme</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Predictor-corrector methods</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghazizadeh, H.R.</creatorcontrib><creatorcontrib>Maerefat, M.</creatorcontrib><creatorcontrib>Azimi, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghazizadeh, H.R.</au><au>Maerefat, M.</au><au>Azimi, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explicit and implicit finite difference schemes for fractional Cattaneo equation</atitle><jtitle>Journal of computational physics</jtitle><date>2010-09-20</date><risdate>2010</risdate><volume>229</volume><issue>19</issue><spage>7042</spage><epage>7057</epage><pages>7042-7057</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>In this paper, the numerical solution of fractional (non-integer)-order Cattaneo equation for describing anomalous diffusion has been investigated. Two finite difference schemes namely an explicit predictor–corrector and totally implicit schemes have been developed. In developing each scheme, a separate formulation approach for the governing equations has been considered. The explicit predictor–corrector scheme is the fractional generalization of well-known MacCormack scheme and has been called Generalized MacCormack scheme. This scheme solves two coupled low-order equations and simultaneously computes the flux term with the main variable. Fully implicit scheme however solves a single high-order undecomposed equation. For Generalized MacCormack scheme, stability analysis has been studied through Fourier method. Through a numerical test, the experimental order of convergency of both schemes has been found. Then, the domain of applicability and some numerical properties of each scheme have been discussed.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2010.05.039</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2010-09, Vol.229 (19), p.7042-7057
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_1671500273
source Access via ScienceDirect (Elsevier)
subjects Computation
Computational techniques
Convergence rate
Diffusion
Exact sciences and technology
Finite difference schemes
Flux
Fourier analysis
Fractional Cattaneo equation
MacCormack scheme
Mathematical analysis
Mathematical methods in physics
Mathematical models
Physics
Predictor-corrector methods
Stability
title Explicit and implicit finite difference schemes for fractional Cattaneo equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A37%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explicit%20and%20implicit%20finite%20difference%20schemes%20for%20fractional%20Cattaneo%20equation&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Ghazizadeh,%20H.R.&rft.date=2010-09-20&rft.volume=229&rft.issue=19&rft.spage=7042&rft.epage=7057&rft.pages=7042-7057&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2010.05.039&rft_dat=%3Cproquest_cross%3E1671500273%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671500273&rft_id=info:pmid/&rft_els_id=S0021999110003001&rfr_iscdi=true