Parsing the Hand in Depth Images

Hand pose tracking and gesture recognition are useful for human-computer interaction, while a major problem is the lack of discriminative features for compact hand representation. We present a robust hand parsing scheme to extract a high-level description of the hand from the depth image. A novel di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2014-08, Vol.16 (5), p.1241-1253
Hauptverfasser: Hui Liang, Junsong Yuan, Thalmann, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1253
container_issue 5
container_start_page 1241
container_title IEEE transactions on multimedia
container_volume 16
creator Hui Liang
Junsong Yuan
Thalmann, Daniel
description Hand pose tracking and gesture recognition are useful for human-computer interaction, while a major problem is the lack of discriminative features for compact hand representation. We present a robust hand parsing scheme to extract a high-level description of the hand from the depth image. A novel distance-adaptive selection method is proposed to get more discriminative depth-context features. Besides, we propose a Superpixel-Markov Random Field (SMRF) parsing scheme to enforce the spatial smoothness and the label co-occurrence prior to remove the misclassified regions. Compared to pixel-level filtering, the SMRF scheme is more suitable to model the misclassified regions. By fusing the temporal constraints, its performance can be further improved. Overall, the proposed hand parsing scheme is accurate and efficient. The tests on synthesized dataset show it gives much higher accuracy for single-frame parsing and enhanced robustness for continuous sequence parsing compared to benchmarks. The tests on real-world depth images of the hand and human body show the robustness to complex hand configurations of our method and its generalization power to different kinds of articulated objects.
doi_str_mv 10.1109/TMM.2014.2306177
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671498944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6740010</ieee_id><sourcerecordid>1671498944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-3b48df202cb300d29156c0b1531bf743f5df38ade5ea4c4a238d6b266ac5af4a3</originalsourceid><addsrcrecordid>eNpdkD1PwzAURS0EEqWwI7FEYmFJec-f8YhKoZVawVBmy0nsNlWbFDsd-Pe4asXA9O5w7tXTIeQeYYQI-nm5WIwoIB9RBhKVuiAD1BxzAKUuUxYUck0RrslNjBtIpAA1INmnDbFpV1m_dtnUtnXWtNmr2_frbLazKxdvyZW32-juzndIvt4my_E0n3-8z8Yv87xilPc5K3lRewq0KhlATTUKWUGJgmHpFWde1J4VtnbCWV5xS1lRy5JKaSthPbdsSJ5Ou_vQfR9c7M2uiZXbbm3rukM0KBVyXWjOE_r4D910h9Cm7wwKrigtlC4SBSeqCl2MwXmzD83Ohh-DYI7KTFJmjsrMWVmqPJwqjXPuD5eKJ13AfgEPCWQ-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547228798</pqid></control><display><type>article</type><title>Parsing the Hand in Depth Images</title><source>IEEE Electronic Library (IEL)</source><creator>Hui Liang ; Junsong Yuan ; Thalmann, Daniel</creator><creatorcontrib>Hui Liang ; Junsong Yuan ; Thalmann, Daniel</creatorcontrib><description>Hand pose tracking and gesture recognition are useful for human-computer interaction, while a major problem is the lack of discriminative features for compact hand representation. We present a robust hand parsing scheme to extract a high-level description of the hand from the depth image. A novel distance-adaptive selection method is proposed to get more discriminative depth-context features. Besides, we propose a Superpixel-Markov Random Field (SMRF) parsing scheme to enforce the spatial smoothness and the label co-occurrence prior to remove the misclassified regions. Compared to pixel-level filtering, the SMRF scheme is more suitable to model the misclassified regions. By fusing the temporal constraints, its performance can be further improved. Overall, the proposed hand parsing scheme is accurate and efficient. The tests on synthesized dataset show it gives much higher accuracy for single-frame parsing and enhanced robustness for continuous sequence parsing compared to benchmarks. The tests on real-world depth images of the hand and human body show the robustness to complex hand configurations of our method and its generalization power to different kinds of articulated objects.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2014.2306177</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Benchmarks ; Cameras ; Depth-context feature ; Filtering ; Gesture recognition ; hand parsing ; Image color analysis ; Markov random field ; Markov random fields ; Multimedia ; Representations ; Resource description framework ; Robustness ; Shape ; Temporal logic ; Tracking</subject><ispartof>IEEE transactions on multimedia, 2014-08, Vol.16 (5), p.1241-1253</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-3b48df202cb300d29156c0b1531bf743f5df38ade5ea4c4a238d6b266ac5af4a3</citedby><cites>FETCH-LOGICAL-c324t-3b48df202cb300d29156c0b1531bf743f5df38ade5ea4c4a238d6b266ac5af4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6740010$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6740010$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hui Liang</creatorcontrib><creatorcontrib>Junsong Yuan</creatorcontrib><creatorcontrib>Thalmann, Daniel</creatorcontrib><title>Parsing the Hand in Depth Images</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Hand pose tracking and gesture recognition are useful for human-computer interaction, while a major problem is the lack of discriminative features for compact hand representation. We present a robust hand parsing scheme to extract a high-level description of the hand from the depth image. A novel distance-adaptive selection method is proposed to get more discriminative depth-context features. Besides, we propose a Superpixel-Markov Random Field (SMRF) parsing scheme to enforce the spatial smoothness and the label co-occurrence prior to remove the misclassified regions. Compared to pixel-level filtering, the SMRF scheme is more suitable to model the misclassified regions. By fusing the temporal constraints, its performance can be further improved. Overall, the proposed hand parsing scheme is accurate and efficient. The tests on synthesized dataset show it gives much higher accuracy for single-frame parsing and enhanced robustness for continuous sequence parsing compared to benchmarks. The tests on real-world depth images of the hand and human body show the robustness to complex hand configurations of our method and its generalization power to different kinds of articulated objects.</description><subject>Benchmarks</subject><subject>Cameras</subject><subject>Depth-context feature</subject><subject>Filtering</subject><subject>Gesture recognition</subject><subject>hand parsing</subject><subject>Image color analysis</subject><subject>Markov random field</subject><subject>Markov random fields</subject><subject>Multimedia</subject><subject>Representations</subject><subject>Resource description framework</subject><subject>Robustness</subject><subject>Shape</subject><subject>Temporal logic</subject><subject>Tracking</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAURS0EEqWwI7FEYmFJec-f8YhKoZVawVBmy0nsNlWbFDsd-Pe4asXA9O5w7tXTIeQeYYQI-nm5WIwoIB9RBhKVuiAD1BxzAKUuUxYUck0RrslNjBtIpAA1INmnDbFpV1m_dtnUtnXWtNmr2_frbLazKxdvyZW32-juzndIvt4my_E0n3-8z8Yv87xilPc5K3lRewq0KhlATTUKWUGJgmHpFWde1J4VtnbCWV5xS1lRy5JKaSthPbdsSJ5Ou_vQfR9c7M2uiZXbbm3rukM0KBVyXWjOE_r4D910h9Cm7wwKrigtlC4SBSeqCl2MwXmzD83Ohh-DYI7KTFJmjsrMWVmqPJwqjXPuD5eKJ13AfgEPCWQ-</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Hui Liang</creator><creator>Junsong Yuan</creator><creator>Thalmann, Daniel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140801</creationdate><title>Parsing the Hand in Depth Images</title><author>Hui Liang ; Junsong Yuan ; Thalmann, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-3b48df202cb300d29156c0b1531bf743f5df38ade5ea4c4a238d6b266ac5af4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Benchmarks</topic><topic>Cameras</topic><topic>Depth-context feature</topic><topic>Filtering</topic><topic>Gesture recognition</topic><topic>hand parsing</topic><topic>Image color analysis</topic><topic>Markov random field</topic><topic>Markov random fields</topic><topic>Multimedia</topic><topic>Representations</topic><topic>Resource description framework</topic><topic>Robustness</topic><topic>Shape</topic><topic>Temporal logic</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hui Liang</creatorcontrib><creatorcontrib>Junsong Yuan</creatorcontrib><creatorcontrib>Thalmann, Daniel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hui Liang</au><au>Junsong Yuan</au><au>Thalmann, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parsing the Hand in Depth Images</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>16</volume><issue>5</issue><spage>1241</spage><epage>1253</epage><pages>1241-1253</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Hand pose tracking and gesture recognition are useful for human-computer interaction, while a major problem is the lack of discriminative features for compact hand representation. We present a robust hand parsing scheme to extract a high-level description of the hand from the depth image. A novel distance-adaptive selection method is proposed to get more discriminative depth-context features. Besides, we propose a Superpixel-Markov Random Field (SMRF) parsing scheme to enforce the spatial smoothness and the label co-occurrence prior to remove the misclassified regions. Compared to pixel-level filtering, the SMRF scheme is more suitable to model the misclassified regions. By fusing the temporal constraints, its performance can be further improved. Overall, the proposed hand parsing scheme is accurate and efficient. The tests on synthesized dataset show it gives much higher accuracy for single-frame parsing and enhanced robustness for continuous sequence parsing compared to benchmarks. The tests on real-world depth images of the hand and human body show the robustness to complex hand configurations of our method and its generalization power to different kinds of articulated objects.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2014.2306177</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2014-08, Vol.16 (5), p.1241-1253
issn 1520-9210
1941-0077
language eng
recordid cdi_proquest_miscellaneous_1671498944
source IEEE Electronic Library (IEL)
subjects Benchmarks
Cameras
Depth-context feature
Filtering
Gesture recognition
hand parsing
Image color analysis
Markov random field
Markov random fields
Multimedia
Representations
Resource description framework
Robustness
Shape
Temporal logic
Tracking
title Parsing the Hand in Depth Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T14%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parsing%20the%20Hand%20in%20Depth%20Images&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Hui%20Liang&rft.date=2014-08-01&rft.volume=16&rft.issue=5&rft.spage=1241&rft.epage=1253&rft.pages=1241-1253&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2014.2306177&rft_dat=%3Cproquest_RIE%3E1671498944%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1547228798&rft_id=info:pmid/&rft_ieee_id=6740010&rfr_iscdi=true