Parsing the Hand in Depth Images
Hand pose tracking and gesture recognition are useful for human-computer interaction, while a major problem is the lack of discriminative features for compact hand representation. We present a robust hand parsing scheme to extract a high-level description of the hand from the depth image. A novel di...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2014-08, Vol.16 (5), p.1241-1253 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1253 |
---|---|
container_issue | 5 |
container_start_page | 1241 |
container_title | IEEE transactions on multimedia |
container_volume | 16 |
creator | Hui Liang Junsong Yuan Thalmann, Daniel |
description | Hand pose tracking and gesture recognition are useful for human-computer interaction, while a major problem is the lack of discriminative features for compact hand representation. We present a robust hand parsing scheme to extract a high-level description of the hand from the depth image. A novel distance-adaptive selection method is proposed to get more discriminative depth-context features. Besides, we propose a Superpixel-Markov Random Field (SMRF) parsing scheme to enforce the spatial smoothness and the label co-occurrence prior to remove the misclassified regions. Compared to pixel-level filtering, the SMRF scheme is more suitable to model the misclassified regions. By fusing the temporal constraints, its performance can be further improved. Overall, the proposed hand parsing scheme is accurate and efficient. The tests on synthesized dataset show it gives much higher accuracy for single-frame parsing and enhanced robustness for continuous sequence parsing compared to benchmarks. The tests on real-world depth images of the hand and human body show the robustness to complex hand configurations of our method and its generalization power to different kinds of articulated objects. |
doi_str_mv | 10.1109/TMM.2014.2306177 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671498944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6740010</ieee_id><sourcerecordid>1671498944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-3b48df202cb300d29156c0b1531bf743f5df38ade5ea4c4a238d6b266ac5af4a3</originalsourceid><addsrcrecordid>eNpdkD1PwzAURS0EEqWwI7FEYmFJec-f8YhKoZVawVBmy0nsNlWbFDsd-Pe4asXA9O5w7tXTIeQeYYQI-nm5WIwoIB9RBhKVuiAD1BxzAKUuUxYUck0RrslNjBtIpAA1INmnDbFpV1m_dtnUtnXWtNmr2_frbLazKxdvyZW32-juzndIvt4my_E0n3-8z8Yv87xilPc5K3lRewq0KhlATTUKWUGJgmHpFWde1J4VtnbCWV5xS1lRy5JKaSthPbdsSJ5Ou_vQfR9c7M2uiZXbbm3rukM0KBVyXWjOE_r4D910h9Cm7wwKrigtlC4SBSeqCl2MwXmzD83Ohh-DYI7KTFJmjsrMWVmqPJwqjXPuD5eKJ13AfgEPCWQ-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547228798</pqid></control><display><type>article</type><title>Parsing the Hand in Depth Images</title><source>IEEE Electronic Library (IEL)</source><creator>Hui Liang ; Junsong Yuan ; Thalmann, Daniel</creator><creatorcontrib>Hui Liang ; Junsong Yuan ; Thalmann, Daniel</creatorcontrib><description>Hand pose tracking and gesture recognition are useful for human-computer interaction, while a major problem is the lack of discriminative features for compact hand representation. We present a robust hand parsing scheme to extract a high-level description of the hand from the depth image. A novel distance-adaptive selection method is proposed to get more discriminative depth-context features. Besides, we propose a Superpixel-Markov Random Field (SMRF) parsing scheme to enforce the spatial smoothness and the label co-occurrence prior to remove the misclassified regions. Compared to pixel-level filtering, the SMRF scheme is more suitable to model the misclassified regions. By fusing the temporal constraints, its performance can be further improved. Overall, the proposed hand parsing scheme is accurate and efficient. The tests on synthesized dataset show it gives much higher accuracy for single-frame parsing and enhanced robustness for continuous sequence parsing compared to benchmarks. The tests on real-world depth images of the hand and human body show the robustness to complex hand configurations of our method and its generalization power to different kinds of articulated objects.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2014.2306177</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Benchmarks ; Cameras ; Depth-context feature ; Filtering ; Gesture recognition ; hand parsing ; Image color analysis ; Markov random field ; Markov random fields ; Multimedia ; Representations ; Resource description framework ; Robustness ; Shape ; Temporal logic ; Tracking</subject><ispartof>IEEE transactions on multimedia, 2014-08, Vol.16 (5), p.1241-1253</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-3b48df202cb300d29156c0b1531bf743f5df38ade5ea4c4a238d6b266ac5af4a3</citedby><cites>FETCH-LOGICAL-c324t-3b48df202cb300d29156c0b1531bf743f5df38ade5ea4c4a238d6b266ac5af4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6740010$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6740010$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hui Liang</creatorcontrib><creatorcontrib>Junsong Yuan</creatorcontrib><creatorcontrib>Thalmann, Daniel</creatorcontrib><title>Parsing the Hand in Depth Images</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Hand pose tracking and gesture recognition are useful for human-computer interaction, while a major problem is the lack of discriminative features for compact hand representation. We present a robust hand parsing scheme to extract a high-level description of the hand from the depth image. A novel distance-adaptive selection method is proposed to get more discriminative depth-context features. Besides, we propose a Superpixel-Markov Random Field (SMRF) parsing scheme to enforce the spatial smoothness and the label co-occurrence prior to remove the misclassified regions. Compared to pixel-level filtering, the SMRF scheme is more suitable to model the misclassified regions. By fusing the temporal constraints, its performance can be further improved. Overall, the proposed hand parsing scheme is accurate and efficient. The tests on synthesized dataset show it gives much higher accuracy for single-frame parsing and enhanced robustness for continuous sequence parsing compared to benchmarks. The tests on real-world depth images of the hand and human body show the robustness to complex hand configurations of our method and its generalization power to different kinds of articulated objects.</description><subject>Benchmarks</subject><subject>Cameras</subject><subject>Depth-context feature</subject><subject>Filtering</subject><subject>Gesture recognition</subject><subject>hand parsing</subject><subject>Image color analysis</subject><subject>Markov random field</subject><subject>Markov random fields</subject><subject>Multimedia</subject><subject>Representations</subject><subject>Resource description framework</subject><subject>Robustness</subject><subject>Shape</subject><subject>Temporal logic</subject><subject>Tracking</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAURS0EEqWwI7FEYmFJec-f8YhKoZVawVBmy0nsNlWbFDsd-Pe4asXA9O5w7tXTIeQeYYQI-nm5WIwoIB9RBhKVuiAD1BxzAKUuUxYUck0RrslNjBtIpAA1INmnDbFpV1m_dtnUtnXWtNmr2_frbLazKxdvyZW32-juzndIvt4my_E0n3-8z8Yv87xilPc5K3lRewq0KhlATTUKWUGJgmHpFWde1J4VtnbCWV5xS1lRy5JKaSthPbdsSJ5Ou_vQfR9c7M2uiZXbbm3rukM0KBVyXWjOE_r4D910h9Cm7wwKrigtlC4SBSeqCl2MwXmzD83Ohh-DYI7KTFJmjsrMWVmqPJwqjXPuD5eKJ13AfgEPCWQ-</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Hui Liang</creator><creator>Junsong Yuan</creator><creator>Thalmann, Daniel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140801</creationdate><title>Parsing the Hand in Depth Images</title><author>Hui Liang ; Junsong Yuan ; Thalmann, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-3b48df202cb300d29156c0b1531bf743f5df38ade5ea4c4a238d6b266ac5af4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Benchmarks</topic><topic>Cameras</topic><topic>Depth-context feature</topic><topic>Filtering</topic><topic>Gesture recognition</topic><topic>hand parsing</topic><topic>Image color analysis</topic><topic>Markov random field</topic><topic>Markov random fields</topic><topic>Multimedia</topic><topic>Representations</topic><topic>Resource description framework</topic><topic>Robustness</topic><topic>Shape</topic><topic>Temporal logic</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hui Liang</creatorcontrib><creatorcontrib>Junsong Yuan</creatorcontrib><creatorcontrib>Thalmann, Daniel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hui Liang</au><au>Junsong Yuan</au><au>Thalmann, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parsing the Hand in Depth Images</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>16</volume><issue>5</issue><spage>1241</spage><epage>1253</epage><pages>1241-1253</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Hand pose tracking and gesture recognition are useful for human-computer interaction, while a major problem is the lack of discriminative features for compact hand representation. We present a robust hand parsing scheme to extract a high-level description of the hand from the depth image. A novel distance-adaptive selection method is proposed to get more discriminative depth-context features. Besides, we propose a Superpixel-Markov Random Field (SMRF) parsing scheme to enforce the spatial smoothness and the label co-occurrence prior to remove the misclassified regions. Compared to pixel-level filtering, the SMRF scheme is more suitable to model the misclassified regions. By fusing the temporal constraints, its performance can be further improved. Overall, the proposed hand parsing scheme is accurate and efficient. The tests on synthesized dataset show it gives much higher accuracy for single-frame parsing and enhanced robustness for continuous sequence parsing compared to benchmarks. The tests on real-world depth images of the hand and human body show the robustness to complex hand configurations of our method and its generalization power to different kinds of articulated objects.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2014.2306177</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2014-08, Vol.16 (5), p.1241-1253 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671498944 |
source | IEEE Electronic Library (IEL) |
subjects | Benchmarks Cameras Depth-context feature Filtering Gesture recognition hand parsing Image color analysis Markov random field Markov random fields Multimedia Representations Resource description framework Robustness Shape Temporal logic Tracking |
title | Parsing the Hand in Depth Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T14%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parsing%20the%20Hand%20in%20Depth%20Images&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Hui%20Liang&rft.date=2014-08-01&rft.volume=16&rft.issue=5&rft.spage=1241&rft.epage=1253&rft.pages=1241-1253&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2014.2306177&rft_dat=%3Cproquest_RIE%3E1671498944%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1547228798&rft_id=info:pmid/&rft_ieee_id=6740010&rfr_iscdi=true |