True detection limits in an experimental linearly heteroscedastic system
Despite much different processing of the experimental fluorescence detection data presented in Part 1, essentially the same estimates were obtained for the true theoretical Currie decision levels ( Y C and X C ) and true Currie detection limits ( Y D and X D ). The obtained experimental values, for...
Gespeichert in:
Veröffentlicht in: | Spectrochimica acta. Part B: Atomic spectroscopy 2011-11, Vol.66 (11), p.828-833 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 833 |
---|---|
container_issue | 11 |
container_start_page | 828 |
container_title | Spectrochimica acta. Part B: Atomic spectroscopy |
container_volume | 66 |
creator | Voigtman, Edward Abraham, Kevin T. |
description | Despite much different processing of the experimental fluorescence detection data presented in Part 1, essentially the same estimates were obtained for the true theoretical Currie decision levels (
Y
C
and
X
C
) and true Currie detection limits (
Y
D
and
X
D
). The obtained experimental values, for
5% probability of false positives and
5% probability of false negatives, were
Y
C
=
56.0
mV,
Y
D
=
125. mV,
X
C
=
0.132
μg/mL and
X
D
=
0.293
μg/mL. For
5% probability of false positives and
1% probability of false negatives, the obtained detection limits were
Y
D
=
158
. mV and
X
D
=
0.371
μg/mL. Furthermore, by using bootstrapping methodology on the experimental data for the standards and the analytical blank, it was possible to validate previously published experimental domain expressions for the decision levels (
y
C
and
x
C
) and detection limits (
y
D
and
x
D
). This was demonstrated by testing the generated decision levels and detection limits for their performance in regard to false positives and false negatives. In every case, the obtained numbers of false negatives and false positives were as specified a priori.
► True Currie detection limits are estimated. ► Experimental results validate previous 2008 theory. ► Linearly heteroscedastic system is correctly modeled. |
doi_str_mv | 10.1016/j.sab.2011.11.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671498895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0584854711002278</els_id><sourcerecordid>1266759224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2085-8f9425de8de16ce7e7cac6f4546e3098d418f84856631a50ef2dace2b7c919ed3</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKs_wFuOXnZNskk2iycpaoWCl3oOaTKLKbvZmqRi_70p9azwYA7z3jDvQ-iWkpoSKu-3dTKbmhFK6yJC5BmaUdU2VSOkOEczIhSvlODtJbpKaUsIYYKJGVqu4x6wgww2-yngwY8-J-wDNgHD9w6iHyFkM5RNABOHA_4o5jglC86k7C1Oh5RhvEYXvRkS3PzOOXp_flovltXq7eV18biqLCNKVKrvOBMOlAMqLbTQWmNlzwWX0JBOOU5Vr7gSUjbUCAI9c8YC27S2ox24Zo7uTnd3cfrcQ8p69OWXYTABpn3SVLaUd0p14n8rk7IVHWO8WOnJakuzFKHXu1LcxIOmRB8B660ugPURsC4qgEvm4ZSBUvfLQ9TJegiFi4-FpnaT_yP9A5Xug68</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266759224</pqid></control><display><type>article</type><title>True detection limits in an experimental linearly heteroscedastic system</title><source>Elsevier ScienceDirect Journals</source><creator>Voigtman, Edward ; Abraham, Kevin T.</creator><creatorcontrib>Voigtman, Edward ; Abraham, Kevin T.</creatorcontrib><description>Despite much different processing of the experimental fluorescence detection data presented in Part 1, essentially the same estimates were obtained for the true theoretical Currie decision levels (
Y
C
and
X
C
) and true Currie detection limits (
Y
D
and
X
D
). The obtained experimental values, for
5% probability of false positives and
5% probability of false negatives, were
Y
C
=
56.0
mV,
Y
D
=
125. mV,
X
C
=
0.132
μg/mL and
X
D
=
0.293
μg/mL. For
5% probability of false positives and
1% probability of false negatives, the obtained detection limits were
Y
D
=
158
. mV and
X
D
=
0.371
μg/mL. Furthermore, by using bootstrapping methodology on the experimental data for the standards and the analytical blank, it was possible to validate previously published experimental domain expressions for the decision levels (
y
C
and
x
C
) and detection limits (
y
D
and
x
D
). This was demonstrated by testing the generated decision levels and detection limits for their performance in regard to false positives and false negatives. In every case, the obtained numbers of false negatives and false positives were as specified a priori.
► True Currie detection limits are estimated. ► Experimental results validate previous 2008 theory. ► Linearly heteroscedastic system is correctly modeled.</description><identifier>ISSN: 0584-8547</identifier><identifier>EISSN: 1873-3565</identifier><identifier>DOI: 10.1016/j.sab.2011.11.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Atomic spectroscopy ; Blanks ; Currie ; Decision analysis ; Decision theory ; Detection limit ; Estimates ; Fluorescence ; Heteroscedastic ; Limit of detection ; Mathematical analysis</subject><ispartof>Spectrochimica acta. Part B: Atomic spectroscopy, 2011-11, Vol.66 (11), p.828-833</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2085-8f9425de8de16ce7e7cac6f4546e3098d418f84856631a50ef2dace2b7c919ed3</citedby><cites>FETCH-LOGICAL-c2085-8f9425de8de16ce7e7cac6f4546e3098d418f84856631a50ef2dace2b7c919ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0584854711002278$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Voigtman, Edward</creatorcontrib><creatorcontrib>Abraham, Kevin T.</creatorcontrib><title>True detection limits in an experimental linearly heteroscedastic system</title><title>Spectrochimica acta. Part B: Atomic spectroscopy</title><description>Despite much different processing of the experimental fluorescence detection data presented in Part 1, essentially the same estimates were obtained for the true theoretical Currie decision levels (
Y
C
and
X
C
) and true Currie detection limits (
Y
D
and
X
D
). The obtained experimental values, for
5% probability of false positives and
5% probability of false negatives, were
Y
C
=
56.0
mV,
Y
D
=
125. mV,
X
C
=
0.132
μg/mL and
X
D
=
0.293
μg/mL. For
5% probability of false positives and
1% probability of false negatives, the obtained detection limits were
Y
D
=
158
. mV and
X
D
=
0.371
μg/mL. Furthermore, by using bootstrapping methodology on the experimental data for the standards and the analytical blank, it was possible to validate previously published experimental domain expressions for the decision levels (
y
C
and
x
C
) and detection limits (
y
D
and
x
D
). This was demonstrated by testing the generated decision levels and detection limits for their performance in regard to false positives and false negatives. In every case, the obtained numbers of false negatives and false positives were as specified a priori.
► True Currie detection limits are estimated. ► Experimental results validate previous 2008 theory. ► Linearly heteroscedastic system is correctly modeled.</description><subject>Atomic spectroscopy</subject><subject>Blanks</subject><subject>Currie</subject><subject>Decision analysis</subject><subject>Decision theory</subject><subject>Detection limit</subject><subject>Estimates</subject><subject>Fluorescence</subject><subject>Heteroscedastic</subject><subject>Limit of detection</subject><subject>Mathematical analysis</subject><issn>0584-8547</issn><issn>1873-3565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQhYMoWKs_wFuOXnZNskk2iycpaoWCl3oOaTKLKbvZmqRi_70p9azwYA7z3jDvQ-iWkpoSKu-3dTKbmhFK6yJC5BmaUdU2VSOkOEczIhSvlODtJbpKaUsIYYKJGVqu4x6wgww2-yngwY8-J-wDNgHD9w6iHyFkM5RNABOHA_4o5jglC86k7C1Oh5RhvEYXvRkS3PzOOXp_flovltXq7eV18biqLCNKVKrvOBMOlAMqLbTQWmNlzwWX0JBOOU5Vr7gSUjbUCAI9c8YC27S2ox24Zo7uTnd3cfrcQ8p69OWXYTABpn3SVLaUd0p14n8rk7IVHWO8WOnJakuzFKHXu1LcxIOmRB8B660ugPURsC4qgEvm4ZSBUvfLQ9TJegiFi4-FpnaT_yP9A5Xug68</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Voigtman, Edward</creator><creator>Abraham, Kevin T.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20111101</creationdate><title>True detection limits in an experimental linearly heteroscedastic system</title><author>Voigtman, Edward ; Abraham, Kevin T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2085-8f9425de8de16ce7e7cac6f4546e3098d418f84856631a50ef2dace2b7c919ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atomic spectroscopy</topic><topic>Blanks</topic><topic>Currie</topic><topic>Decision analysis</topic><topic>Decision theory</topic><topic>Detection limit</topic><topic>Estimates</topic><topic>Fluorescence</topic><topic>Heteroscedastic</topic><topic>Limit of detection</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voigtman, Edward</creatorcontrib><creatorcontrib>Abraham, Kevin T.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Spectrochimica acta. Part B: Atomic spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voigtman, Edward</au><au>Abraham, Kevin T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>True detection limits in an experimental linearly heteroscedastic system</atitle><jtitle>Spectrochimica acta. Part B: Atomic spectroscopy</jtitle><date>2011-11-01</date><risdate>2011</risdate><volume>66</volume><issue>11</issue><spage>828</spage><epage>833</epage><pages>828-833</pages><issn>0584-8547</issn><eissn>1873-3565</eissn><abstract>Despite much different processing of the experimental fluorescence detection data presented in Part 1, essentially the same estimates were obtained for the true theoretical Currie decision levels (
Y
C
and
X
C
) and true Currie detection limits (
Y
D
and
X
D
). The obtained experimental values, for
5% probability of false positives and
5% probability of false negatives, were
Y
C
=
56.0
mV,
Y
D
=
125. mV,
X
C
=
0.132
μg/mL and
X
D
=
0.293
μg/mL. For
5% probability of false positives and
1% probability of false negatives, the obtained detection limits were
Y
D
=
158
. mV and
X
D
=
0.371
μg/mL. Furthermore, by using bootstrapping methodology on the experimental data for the standards and the analytical blank, it was possible to validate previously published experimental domain expressions for the decision levels (
y
C
and
x
C
) and detection limits (
y
D
and
x
D
). This was demonstrated by testing the generated decision levels and detection limits for their performance in regard to false positives and false negatives. In every case, the obtained numbers of false negatives and false positives were as specified a priori.
► True Currie detection limits are estimated. ► Experimental results validate previous 2008 theory. ► Linearly heteroscedastic system is correctly modeled.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sab.2011.11.006</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0584-8547 |
ispartof | Spectrochimica acta. Part B: Atomic spectroscopy, 2011-11, Vol.66 (11), p.828-833 |
issn | 0584-8547 1873-3565 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671498895 |
source | Elsevier ScienceDirect Journals |
subjects | Atomic spectroscopy Blanks Currie Decision analysis Decision theory Detection limit Estimates Fluorescence Heteroscedastic Limit of detection Mathematical analysis |
title | True detection limits in an experimental linearly heteroscedastic system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A52%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=True%20detection%20limits%20in%20an%20experimental%20linearly%20heteroscedastic%20system&rft.jtitle=Spectrochimica%20acta.%20Part%20B:%20Atomic%20spectroscopy&rft.au=Voigtman,%20Edward&rft.date=2011-11-01&rft.volume=66&rft.issue=11&rft.spage=828&rft.epage=833&rft.pages=828-833&rft.issn=0584-8547&rft.eissn=1873-3565&rft_id=info:doi/10.1016/j.sab.2011.11.006&rft_dat=%3Cproquest_cross%3E1266759224%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266759224&rft_id=info:pmid/&rft_els_id=S0584854711002278&rfr_iscdi=true |