True detection limits in an experimental linearly heteroscedastic system

Despite much different processing of the experimental fluorescence detection data presented in Part 1, essentially the same estimates were obtained for the true theoretical Currie decision levels ( Y C and X C ) and true Currie detection limits ( Y D and X D ). The obtained experimental values, for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Spectrochimica acta. Part B: Atomic spectroscopy 2011-11, Vol.66 (11), p.828-833
Hauptverfasser: Voigtman, Edward, Abraham, Kevin T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 833
container_issue 11
container_start_page 828
container_title Spectrochimica acta. Part B: Atomic spectroscopy
container_volume 66
creator Voigtman, Edward
Abraham, Kevin T.
description Despite much different processing of the experimental fluorescence detection data presented in Part 1, essentially the same estimates were obtained for the true theoretical Currie decision levels ( Y C and X C ) and true Currie detection limits ( Y D and X D ). The obtained experimental values, for 5% probability of false positives and 5% probability of false negatives, were Y C = 56.0 mV, Y D = 125. mV, X C = 0.132 μg/mL and X D = 0.293 μg/mL. For 5% probability of false positives and 1% probability of false negatives, the obtained detection limits were Y D = 158 . mV and X D = 0.371 μg/mL. Furthermore, by using bootstrapping methodology on the experimental data for the standards and the analytical blank, it was possible to validate previously published experimental domain expressions for the decision levels ( y C and x C ) and detection limits ( y D and x D ). This was demonstrated by testing the generated decision levels and detection limits for their performance in regard to false positives and false negatives. In every case, the obtained numbers of false negatives and false positives were as specified a priori. ► True Currie detection limits are estimated. ► Experimental results validate previous 2008 theory. ► Linearly heteroscedastic system is correctly modeled.
doi_str_mv 10.1016/j.sab.2011.11.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671498895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0584854711002278</els_id><sourcerecordid>1266759224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2085-8f9425de8de16ce7e7cac6f4546e3098d418f84856631a50ef2dace2b7c919ed3</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKs_wFuOXnZNskk2iycpaoWCl3oOaTKLKbvZmqRi_70p9azwYA7z3jDvQ-iWkpoSKu-3dTKbmhFK6yJC5BmaUdU2VSOkOEczIhSvlODtJbpKaUsIYYKJGVqu4x6wgww2-yngwY8-J-wDNgHD9w6iHyFkM5RNABOHA_4o5jglC86k7C1Oh5RhvEYXvRkS3PzOOXp_flovltXq7eV18biqLCNKVKrvOBMOlAMqLbTQWmNlzwWX0JBOOU5Vr7gSUjbUCAI9c8YC27S2ox24Zo7uTnd3cfrcQ8p69OWXYTABpn3SVLaUd0p14n8rk7IVHWO8WOnJakuzFKHXu1LcxIOmRB8B660ugPURsC4qgEvm4ZSBUvfLQ9TJegiFi4-FpnaT_yP9A5Xug68</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266759224</pqid></control><display><type>article</type><title>True detection limits in an experimental linearly heteroscedastic system</title><source>Elsevier ScienceDirect Journals</source><creator>Voigtman, Edward ; Abraham, Kevin T.</creator><creatorcontrib>Voigtman, Edward ; Abraham, Kevin T.</creatorcontrib><description>Despite much different processing of the experimental fluorescence detection data presented in Part 1, essentially the same estimates were obtained for the true theoretical Currie decision levels ( Y C and X C ) and true Currie detection limits ( Y D and X D ). The obtained experimental values, for 5% probability of false positives and 5% probability of false negatives, were Y C = 56.0 mV, Y D = 125. mV, X C = 0.132 μg/mL and X D = 0.293 μg/mL. For 5% probability of false positives and 1% probability of false negatives, the obtained detection limits were Y D = 158 . mV and X D = 0.371 μg/mL. Furthermore, by using bootstrapping methodology on the experimental data for the standards and the analytical blank, it was possible to validate previously published experimental domain expressions for the decision levels ( y C and x C ) and detection limits ( y D and x D ). This was demonstrated by testing the generated decision levels and detection limits for their performance in regard to false positives and false negatives. In every case, the obtained numbers of false negatives and false positives were as specified a priori. ► True Currie detection limits are estimated. ► Experimental results validate previous 2008 theory. ► Linearly heteroscedastic system is correctly modeled.</description><identifier>ISSN: 0584-8547</identifier><identifier>EISSN: 1873-3565</identifier><identifier>DOI: 10.1016/j.sab.2011.11.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Atomic spectroscopy ; Blanks ; Currie ; Decision analysis ; Decision theory ; Detection limit ; Estimates ; Fluorescence ; Heteroscedastic ; Limit of detection ; Mathematical analysis</subject><ispartof>Spectrochimica acta. Part B: Atomic spectroscopy, 2011-11, Vol.66 (11), p.828-833</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2085-8f9425de8de16ce7e7cac6f4546e3098d418f84856631a50ef2dace2b7c919ed3</citedby><cites>FETCH-LOGICAL-c2085-8f9425de8de16ce7e7cac6f4546e3098d418f84856631a50ef2dace2b7c919ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0584854711002278$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Voigtman, Edward</creatorcontrib><creatorcontrib>Abraham, Kevin T.</creatorcontrib><title>True detection limits in an experimental linearly heteroscedastic system</title><title>Spectrochimica acta. Part B: Atomic spectroscopy</title><description>Despite much different processing of the experimental fluorescence detection data presented in Part 1, essentially the same estimates were obtained for the true theoretical Currie decision levels ( Y C and X C ) and true Currie detection limits ( Y D and X D ). The obtained experimental values, for 5% probability of false positives and 5% probability of false negatives, were Y C = 56.0 mV, Y D = 125. mV, X C = 0.132 μg/mL and X D = 0.293 μg/mL. For 5% probability of false positives and 1% probability of false negatives, the obtained detection limits were Y D = 158 . mV and X D = 0.371 μg/mL. Furthermore, by using bootstrapping methodology on the experimental data for the standards and the analytical blank, it was possible to validate previously published experimental domain expressions for the decision levels ( y C and x C ) and detection limits ( y D and x D ). This was demonstrated by testing the generated decision levels and detection limits for their performance in regard to false positives and false negatives. In every case, the obtained numbers of false negatives and false positives were as specified a priori. ► True Currie detection limits are estimated. ► Experimental results validate previous 2008 theory. ► Linearly heteroscedastic system is correctly modeled.</description><subject>Atomic spectroscopy</subject><subject>Blanks</subject><subject>Currie</subject><subject>Decision analysis</subject><subject>Decision theory</subject><subject>Detection limit</subject><subject>Estimates</subject><subject>Fluorescence</subject><subject>Heteroscedastic</subject><subject>Limit of detection</subject><subject>Mathematical analysis</subject><issn>0584-8547</issn><issn>1873-3565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQhYMoWKs_wFuOXnZNskk2iycpaoWCl3oOaTKLKbvZmqRi_70p9azwYA7z3jDvQ-iWkpoSKu-3dTKbmhFK6yJC5BmaUdU2VSOkOEczIhSvlODtJbpKaUsIYYKJGVqu4x6wgww2-yngwY8-J-wDNgHD9w6iHyFkM5RNABOHA_4o5jglC86k7C1Oh5RhvEYXvRkS3PzOOXp_flovltXq7eV18biqLCNKVKrvOBMOlAMqLbTQWmNlzwWX0JBOOU5Vr7gSUjbUCAI9c8YC27S2ox24Zo7uTnd3cfrcQ8p69OWXYTABpn3SVLaUd0p14n8rk7IVHWO8WOnJakuzFKHXu1LcxIOmRB8B660ugPURsC4qgEvm4ZSBUvfLQ9TJegiFi4-FpnaT_yP9A5Xug68</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Voigtman, Edward</creator><creator>Abraham, Kevin T.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20111101</creationdate><title>True detection limits in an experimental linearly heteroscedastic system</title><author>Voigtman, Edward ; Abraham, Kevin T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2085-8f9425de8de16ce7e7cac6f4546e3098d418f84856631a50ef2dace2b7c919ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atomic spectroscopy</topic><topic>Blanks</topic><topic>Currie</topic><topic>Decision analysis</topic><topic>Decision theory</topic><topic>Detection limit</topic><topic>Estimates</topic><topic>Fluorescence</topic><topic>Heteroscedastic</topic><topic>Limit of detection</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voigtman, Edward</creatorcontrib><creatorcontrib>Abraham, Kevin T.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Spectrochimica acta. Part B: Atomic spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voigtman, Edward</au><au>Abraham, Kevin T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>True detection limits in an experimental linearly heteroscedastic system</atitle><jtitle>Spectrochimica acta. Part B: Atomic spectroscopy</jtitle><date>2011-11-01</date><risdate>2011</risdate><volume>66</volume><issue>11</issue><spage>828</spage><epage>833</epage><pages>828-833</pages><issn>0584-8547</issn><eissn>1873-3565</eissn><abstract>Despite much different processing of the experimental fluorescence detection data presented in Part 1, essentially the same estimates were obtained for the true theoretical Currie decision levels ( Y C and X C ) and true Currie detection limits ( Y D and X D ). The obtained experimental values, for 5% probability of false positives and 5% probability of false negatives, were Y C = 56.0 mV, Y D = 125. mV, X C = 0.132 μg/mL and X D = 0.293 μg/mL. For 5% probability of false positives and 1% probability of false negatives, the obtained detection limits were Y D = 158 . mV and X D = 0.371 μg/mL. Furthermore, by using bootstrapping methodology on the experimental data for the standards and the analytical blank, it was possible to validate previously published experimental domain expressions for the decision levels ( y C and x C ) and detection limits ( y D and x D ). This was demonstrated by testing the generated decision levels and detection limits for their performance in regard to false positives and false negatives. In every case, the obtained numbers of false negatives and false positives were as specified a priori. ► True Currie detection limits are estimated. ► Experimental results validate previous 2008 theory. ► Linearly heteroscedastic system is correctly modeled.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sab.2011.11.006</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0584-8547
ispartof Spectrochimica acta. Part B: Atomic spectroscopy, 2011-11, Vol.66 (11), p.828-833
issn 0584-8547
1873-3565
language eng
recordid cdi_proquest_miscellaneous_1671498895
source Elsevier ScienceDirect Journals
subjects Atomic spectroscopy
Blanks
Currie
Decision analysis
Decision theory
Detection limit
Estimates
Fluorescence
Heteroscedastic
Limit of detection
Mathematical analysis
title True detection limits in an experimental linearly heteroscedastic system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A52%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=True%20detection%20limits%20in%20an%20experimental%20linearly%20heteroscedastic%20system&rft.jtitle=Spectrochimica%20acta.%20Part%20B:%20Atomic%20spectroscopy&rft.au=Voigtman,%20Edward&rft.date=2011-11-01&rft.volume=66&rft.issue=11&rft.spage=828&rft.epage=833&rft.pages=828-833&rft.issn=0584-8547&rft.eissn=1873-3565&rft_id=info:doi/10.1016/j.sab.2011.11.006&rft_dat=%3Cproquest_cross%3E1266759224%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266759224&rft_id=info:pmid/&rft_els_id=S0584854711002278&rfr_iscdi=true