Optimal chest compression in cardiopulmonary resuscitation depends upon thoracic and back support stiffness
A biomechanical analysis of the constant peak displacement and constant peak force methods of cardiopulmonary resuscitation (CPR) has revealed that optimal CC performance strongly depends on back support stiffness, CC rate, and the thoracic stiffness of the patient being resuscitated. Clinically the...
Gespeichert in:
Veröffentlicht in: | Medical & biological engineering & computing 2012-12, Vol.50 (12), p.1269-1278 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1278 |
---|---|
container_issue | 12 |
container_start_page | 1269 |
container_title | Medical & biological engineering & computing |
container_volume | 50 |
creator | Dellimore, Kiran H. Scheffer, Cornie |
description | A biomechanical analysis of the constant peak displacement and constant peak force methods of cardiopulmonary resuscitation (CPR) has revealed that optimal CC performance strongly depends on back support stiffness, CC rate, and the thoracic stiffness of the patient being resuscitated. Clinically the results presented in this study suggest that the stiffness of the back support surfaces found in many hospitals may be sub-optimal and that a backboard or a concrete floor can be used to enhance CC effectiveness. In addition, the choice of optimal CC rate and maximum sternal force applied by clinicians during peak force CPR is ought to be based on a general assessment of the patient’s thoracic stiffness, taking into account the patient’s age, gender, and physical condition; which is consistent with current clinical practice. In addition, it is important for clinicians to note that very high peak sternal forces, exceeding the limit above which severe chest wall trauma and abdominal injury occurs, may be required for optimal CC during peak force CPR on patients with very stiff chests. In these cases an alternative CPR technique may be more appropriate. |
doi_str_mv | 10.1007/s11517-012-0963-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671494975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671494975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-d1ae4c2afe25e2bf5b84a4b82ee70bdce8b75164f3c064c09239d0a07bb33f73</originalsourceid><addsrcrecordid>eNqFkVFL3jAUhsNwzG9uP2A3I-CNN91OktOmvRTRORC88T4kaTqrbRKT9kJ_vSmfG0MQr0J4n_Mmh4eQbwx-MAD5MzNWM1kB4xV0jaiePpAdk8gqQMQDsgOGUFLWHpLPOd8BcFZz_EQOuYAaRQs7cn8dl3HWE7W3Li_Uhjkml_MYPB09tTr1Y4jrNAev0yMt0ZrtuOhlA3oXne8zXWO5LLchaTtaqn1Pjbb3NK8xhrTQvIzD4EvpF_Jx0FN2X1_OI3JzcX5zdlldXf_6fXZ6Vdnyp6XqmXZouR4crx03Q21a1Gha7pwE01vXGlmzBgdhoUELHRddDxqkMUIMUhyRk31tTOFhLVupeczWTZP2LqxZsUYy7LCT9fsoCoSNh_dRzgUK4IIX9PgVehfW5MvKhWqa4ga7rZDtKZtCzskNKqZiIj0qBmrTq_Z6VdGrNr3qqcx8f2lezez6fxN_fRaA74FcIv_Hpf-efrP1GZnHsag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266444490</pqid></control><display><type>article</type><title>Optimal chest compression in cardiopulmonary resuscitation depends upon thoracic and back support stiffness</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Business Source Complete</source><creator>Dellimore, Kiran H. ; Scheffer, Cornie</creator><creatorcontrib>Dellimore, Kiran H. ; Scheffer, Cornie</creatorcontrib><description>A biomechanical analysis of the constant peak displacement and constant peak force methods of cardiopulmonary resuscitation (CPR) has revealed that optimal CC performance strongly depends on back support stiffness, CC rate, and the thoracic stiffness of the patient being resuscitated. Clinically the results presented in this study suggest that the stiffness of the back support surfaces found in many hospitals may be sub-optimal and that a backboard or a concrete floor can be used to enhance CC effectiveness. In addition, the choice of optimal CC rate and maximum sternal force applied by clinicians during peak force CPR is ought to be based on a general assessment of the patient’s thoracic stiffness, taking into account the patient’s age, gender, and physical condition; which is consistent with current clinical practice. In addition, it is important for clinicians to note that very high peak sternal forces, exceeding the limit above which severe chest wall trauma and abdominal injury occurs, may be required for optimal CC during peak force CPR on patients with very stiff chests. In these cases an alternative CPR technique may be more appropriate.</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-012-0963-z</identifier><identifier>PMID: 23054380</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Assessments ; Biomechanical Phenomena - physiology ; Biomechanics ; Biomedical and Life Sciences ; Biomedical engineering ; Biomedical Engineering and Bioengineering ; Biomedicine ; Cardiopulmonary resuscitation ; Cardiopulmonary Resuscitation - methods ; Chest ; Compressing ; Computer Applications ; Control theory ; CPR ; Elasticity ; Female ; Hospitals ; Human Physiology ; Humans ; Imaging ; Least-Squares Analysis ; Lifesaving ; Male ; Mechanics ; Models, Biological ; Optimization ; Original Article ; Patients ; Radiology ; Respiratory Mechanics - physiology ; Resuscitation ; Signal Processing, Computer-Assisted ; Spine - physiology ; Sternum - physiology ; Stiffness ; Studies ; Thorax - physiology</subject><ispartof>Medical & biological engineering & computing, 2012-12, Vol.50 (12), p.1269-1278</ispartof><rights>International Federation for Medical and Biological Engineering 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-d1ae4c2afe25e2bf5b84a4b82ee70bdce8b75164f3c064c09239d0a07bb33f73</citedby><cites>FETCH-LOGICAL-c438t-d1ae4c2afe25e2bf5b84a4b82ee70bdce8b75164f3c064c09239d0a07bb33f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-012-0963-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-012-0963-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23054380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dellimore, Kiran H.</creatorcontrib><creatorcontrib>Scheffer, Cornie</creatorcontrib><title>Optimal chest compression in cardiopulmonary resuscitation depends upon thoracic and back support stiffness</title><title>Medical & biological engineering & computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>A biomechanical analysis of the constant peak displacement and constant peak force methods of cardiopulmonary resuscitation (CPR) has revealed that optimal CC performance strongly depends on back support stiffness, CC rate, and the thoracic stiffness of the patient being resuscitated. Clinically the results presented in this study suggest that the stiffness of the back support surfaces found in many hospitals may be sub-optimal and that a backboard or a concrete floor can be used to enhance CC effectiveness. In addition, the choice of optimal CC rate and maximum sternal force applied by clinicians during peak force CPR is ought to be based on a general assessment of the patient’s thoracic stiffness, taking into account the patient’s age, gender, and physical condition; which is consistent with current clinical practice. In addition, it is important for clinicians to note that very high peak sternal forces, exceeding the limit above which severe chest wall trauma and abdominal injury occurs, may be required for optimal CC during peak force CPR on patients with very stiff chests. In these cases an alternative CPR technique may be more appropriate.</description><subject>Assessments</subject><subject>Biomechanical Phenomena - physiology</subject><subject>Biomechanics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical engineering</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Cardiopulmonary resuscitation</subject><subject>Cardiopulmonary Resuscitation - methods</subject><subject>Chest</subject><subject>Compressing</subject><subject>Computer Applications</subject><subject>Control theory</subject><subject>CPR</subject><subject>Elasticity</subject><subject>Female</subject><subject>Hospitals</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Imaging</subject><subject>Least-Squares Analysis</subject><subject>Lifesaving</subject><subject>Male</subject><subject>Mechanics</subject><subject>Models, Biological</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Patients</subject><subject>Radiology</subject><subject>Respiratory Mechanics - physiology</subject><subject>Resuscitation</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Spine - physiology</subject><subject>Sternum - physiology</subject><subject>Stiffness</subject><subject>Studies</subject><subject>Thorax - physiology</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkVFL3jAUhsNwzG9uP2A3I-CNN91OktOmvRTRORC88T4kaTqrbRKT9kJ_vSmfG0MQr0J4n_Mmh4eQbwx-MAD5MzNWM1kB4xV0jaiePpAdk8gqQMQDsgOGUFLWHpLPOd8BcFZz_EQOuYAaRQs7cn8dl3HWE7W3Li_Uhjkml_MYPB09tTr1Y4jrNAev0yMt0ZrtuOhlA3oXne8zXWO5LLchaTtaqn1Pjbb3NK8xhrTQvIzD4EvpF_Jx0FN2X1_OI3JzcX5zdlldXf_6fXZ6Vdnyp6XqmXZouR4crx03Q21a1Gha7pwE01vXGlmzBgdhoUELHRddDxqkMUIMUhyRk31tTOFhLVupeczWTZP2LqxZsUYy7LCT9fsoCoSNh_dRzgUK4IIX9PgVehfW5MvKhWqa4ga7rZDtKZtCzskNKqZiIj0qBmrTq_Z6VdGrNr3qqcx8f2lezez6fxN_fRaA74FcIv_Hpf-efrP1GZnHsag</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Dellimore, Kiran H.</creator><creator>Scheffer, Cornie</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20121201</creationdate><title>Optimal chest compression in cardiopulmonary resuscitation depends upon thoracic and back support stiffness</title><author>Dellimore, Kiran H. ; Scheffer, Cornie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-d1ae4c2afe25e2bf5b84a4b82ee70bdce8b75164f3c064c09239d0a07bb33f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Assessments</topic><topic>Biomechanical Phenomena - physiology</topic><topic>Biomechanics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical engineering</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Cardiopulmonary resuscitation</topic><topic>Cardiopulmonary Resuscitation - methods</topic><topic>Chest</topic><topic>Compressing</topic><topic>Computer Applications</topic><topic>Control theory</topic><topic>CPR</topic><topic>Elasticity</topic><topic>Female</topic><topic>Hospitals</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Imaging</topic><topic>Least-Squares Analysis</topic><topic>Lifesaving</topic><topic>Male</topic><topic>Mechanics</topic><topic>Models, Biological</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Patients</topic><topic>Radiology</topic><topic>Respiratory Mechanics - physiology</topic><topic>Resuscitation</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Spine - physiology</topic><topic>Sternum - physiology</topic><topic>Stiffness</topic><topic>Studies</topic><topic>Thorax - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dellimore, Kiran H.</creatorcontrib><creatorcontrib>Scheffer, Cornie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Medical & biological engineering & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dellimore, Kiran H.</au><au>Scheffer, Cornie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal chest compression in cardiopulmonary resuscitation depends upon thoracic and back support stiffness</atitle><jtitle>Medical & biological engineering & computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2012-12-01</date><risdate>2012</risdate><volume>50</volume><issue>12</issue><spage>1269</spage><epage>1278</epage><pages>1269-1278</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>A biomechanical analysis of the constant peak displacement and constant peak force methods of cardiopulmonary resuscitation (CPR) has revealed that optimal CC performance strongly depends on back support stiffness, CC rate, and the thoracic stiffness of the patient being resuscitated. Clinically the results presented in this study suggest that the stiffness of the back support surfaces found in many hospitals may be sub-optimal and that a backboard or a concrete floor can be used to enhance CC effectiveness. In addition, the choice of optimal CC rate and maximum sternal force applied by clinicians during peak force CPR is ought to be based on a general assessment of the patient’s thoracic stiffness, taking into account the patient’s age, gender, and physical condition; which is consistent with current clinical practice. In addition, it is important for clinicians to note that very high peak sternal forces, exceeding the limit above which severe chest wall trauma and abdominal injury occurs, may be required for optimal CC during peak force CPR on patients with very stiff chests. In these cases an alternative CPR technique may be more appropriate.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>23054380</pmid><doi>10.1007/s11517-012-0963-z</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-0118 |
ispartof | Medical & biological engineering & computing, 2012-12, Vol.50 (12), p.1269-1278 |
issn | 0140-0118 1741-0444 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671494975 |
source | MEDLINE; SpringerLink Journals; Business Source Complete |
subjects | Assessments Biomechanical Phenomena - physiology Biomechanics Biomedical and Life Sciences Biomedical engineering Biomedical Engineering and Bioengineering Biomedicine Cardiopulmonary resuscitation Cardiopulmonary Resuscitation - methods Chest Compressing Computer Applications Control theory CPR Elasticity Female Hospitals Human Physiology Humans Imaging Least-Squares Analysis Lifesaving Male Mechanics Models, Biological Optimization Original Article Patients Radiology Respiratory Mechanics - physiology Resuscitation Signal Processing, Computer-Assisted Spine - physiology Sternum - physiology Stiffness Studies Thorax - physiology |
title | Optimal chest compression in cardiopulmonary resuscitation depends upon thoracic and back support stiffness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A00%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20chest%20compression%20in%20cardiopulmonary%20resuscitation%20depends%20upon%20thoracic%20and%20back%20support%20stiffness&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Dellimore,%20Kiran%20H.&rft.date=2012-12-01&rft.volume=50&rft.issue=12&rft.spage=1269&rft.epage=1278&rft.pages=1269-1278&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-012-0963-z&rft_dat=%3Cproquest_cross%3E1671494975%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266444490&rft_id=info:pmid/23054380&rfr_iscdi=true |