On best-fit corotated frames for 3D continuum finite elements

SUMMARY We discuss a strategy to construct corotated frames for three‐dimensional continuum finite elements by minimizing deformations within the frame. We find that irrespective of the type of element and the number of nodes, using a quaternion parametrization of rotations, this minimization is nat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2014-04, Vol.98 (2), p.105-130
Hauptverfasser: Mostafa, M., Sivaselvan, M.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 130
container_issue 2
container_start_page 105
container_title International journal for numerical methods in engineering
container_volume 98
creator Mostafa, M.
Sivaselvan, M.V.
description SUMMARY We discuss a strategy to construct corotated frames for three‐dimensional continuum finite elements by minimizing deformations within the frame. We find that irrespective of the type of element and the number of nodes, using a quaternion parametrization of rotations, this minimization is naturally stated as computing the smallest eigenvalue of a 4 × 4 matrix. The simplicity of this smallest eigenvalue plays a crucial role when linearizing the kinematics. Ensuant quaternion algebra, although lengthy, results in remarkably simple formulas for projections that arise in the linearized kinematics. The exact stiffness matrix does not require computation of the second derivative of the rotation function and is also given by a simple formula. As a result, the implementation of this corotational formulation becomes particularly straightforward. Furthermore, in contrast to other results in the literature, the stiffness matrix for elements with translational DOFs is symmetric. For illustration, this corotational formulation is applied to a solid‐shell finite element, and numerical results are presented. Copyright © 2014 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nme.4627
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671493086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3242132051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3647-ff2601554c86e4f6f625b50db337a41efa04de6cc31b0a11ebf9e8458139f54c3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKvgTxhw42ZqMnnNLFxIW6ugLWKl3YXM9AamzqMmGbT_3pSKouDqwr3fPZxzEDoneEAwTq6aGgZMJPIA9QjOZIwTLA9RL5yymGcpOUYnzq0xJoRj2kPXsybKwfnYlD4qWtt67WEVGatrcJFpbURHYd_4sum6OjJlU3qIoIIaGu9O0ZHRlYOzr9lHL7fj-fAufphN7oc3D3FBBZOxMYnAhHNWpAKYEUYkPOd4lVMqNSNgNGYrEEVBSY41IZCbDFLGU0IzE75oH13udTe2feuCXVWXroCq0g20nVNESMIyilMR0Is_6LrtbBPcqZCYszQRnP8IFrZ1zoJRG1vW2m4VwWrXowo9ql2PAY336HtZwfZfTk0fx7_50nn4-Oa1fVVCUsnVYjpRTD4vlvOnpRrRT0WPgUc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1505482655</pqid></control><display><type>article</type><title>On best-fit corotated frames for 3D continuum finite elements</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mostafa, M. ; Sivaselvan, M.V.</creator><creatorcontrib>Mostafa, M. ; Sivaselvan, M.V.</creatorcontrib><description>SUMMARY We discuss a strategy to construct corotated frames for three‐dimensional continuum finite elements by minimizing deformations within the frame. We find that irrespective of the type of element and the number of nodes, using a quaternion parametrization of rotations, this minimization is naturally stated as computing the smallest eigenvalue of a 4 × 4 matrix. The simplicity of this smallest eigenvalue plays a crucial role when linearizing the kinematics. Ensuant quaternion algebra, although lengthy, results in remarkably simple formulas for projections that arise in the linearized kinematics. The exact stiffness matrix does not require computation of the second derivative of the rotation function and is also given by a simple formula. As a result, the implementation of this corotational formulation becomes particularly straightforward. Furthermore, in contrast to other results in the literature, the stiffness matrix for elements with translational DOFs is symmetric. For illustration, this corotational formulation is applied to a solid‐shell finite element, and numerical results are presented. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.4627</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>Continuums ; corotational ; eigenvalue ; Eigenvalues ; Finite element method ; Frames ; Mathematical analysis ; Mathematical models ; minimization ; projection ; quaternion ; solid-shell ; Stiffness matrix ; symmetric stiffness matrix ; Three dimensional</subject><ispartof>International journal for numerical methods in engineering, 2014-04, Vol.98 (2), p.105-130</ispartof><rights>Copyright © 2014 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3647-ff2601554c86e4f6f625b50db337a41efa04de6cc31b0a11ebf9e8458139f54c3</citedby><cites>FETCH-LOGICAL-c3647-ff2601554c86e4f6f625b50db337a41efa04de6cc31b0a11ebf9e8458139f54c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.4627$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.4627$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Mostafa, M.</creatorcontrib><creatorcontrib>Sivaselvan, M.V.</creatorcontrib><title>On best-fit corotated frames for 3D continuum finite elements</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>SUMMARY We discuss a strategy to construct corotated frames for three‐dimensional continuum finite elements by minimizing deformations within the frame. We find that irrespective of the type of element and the number of nodes, using a quaternion parametrization of rotations, this minimization is naturally stated as computing the smallest eigenvalue of a 4 × 4 matrix. The simplicity of this smallest eigenvalue plays a crucial role when linearizing the kinematics. Ensuant quaternion algebra, although lengthy, results in remarkably simple formulas for projections that arise in the linearized kinematics. The exact stiffness matrix does not require computation of the second derivative of the rotation function and is also given by a simple formula. As a result, the implementation of this corotational formulation becomes particularly straightforward. Furthermore, in contrast to other results in the literature, the stiffness matrix for elements with translational DOFs is symmetric. For illustration, this corotational formulation is applied to a solid‐shell finite element, and numerical results are presented. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><subject>Continuums</subject><subject>corotational</subject><subject>eigenvalue</subject><subject>Eigenvalues</subject><subject>Finite element method</subject><subject>Frames</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>minimization</subject><subject>projection</subject><subject>quaternion</subject><subject>solid-shell</subject><subject>Stiffness matrix</subject><subject>symmetric stiffness matrix</subject><subject>Three dimensional</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKvgTxhw42ZqMnnNLFxIW6ugLWKl3YXM9AamzqMmGbT_3pSKouDqwr3fPZxzEDoneEAwTq6aGgZMJPIA9QjOZIwTLA9RL5yymGcpOUYnzq0xJoRj2kPXsybKwfnYlD4qWtt67WEVGatrcJFpbURHYd_4sum6OjJlU3qIoIIaGu9O0ZHRlYOzr9lHL7fj-fAufphN7oc3D3FBBZOxMYnAhHNWpAKYEUYkPOd4lVMqNSNgNGYrEEVBSY41IZCbDFLGU0IzE75oH13udTe2feuCXVWXroCq0g20nVNESMIyilMR0Is_6LrtbBPcqZCYszQRnP8IFrZ1zoJRG1vW2m4VwWrXowo9ql2PAY336HtZwfZfTk0fx7_50nn4-Oa1fVVCUsnVYjpRTD4vlvOnpRrRT0WPgUc</recordid><startdate>20140413</startdate><enddate>20140413</enddate><creator>Mostafa, M.</creator><creator>Sivaselvan, M.V.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140413</creationdate><title>On best-fit corotated frames for 3D continuum finite elements</title><author>Mostafa, M. ; Sivaselvan, M.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3647-ff2601554c86e4f6f625b50db337a41efa04de6cc31b0a11ebf9e8458139f54c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Continuums</topic><topic>corotational</topic><topic>eigenvalue</topic><topic>Eigenvalues</topic><topic>Finite element method</topic><topic>Frames</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>minimization</topic><topic>projection</topic><topic>quaternion</topic><topic>solid-shell</topic><topic>Stiffness matrix</topic><topic>symmetric stiffness matrix</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mostafa, M.</creatorcontrib><creatorcontrib>Sivaselvan, M.V.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mostafa, M.</au><au>Sivaselvan, M.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On best-fit corotated frames for 3D continuum finite elements</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2014-04-13</date><risdate>2014</risdate><volume>98</volume><issue>2</issue><spage>105</spage><epage>130</epage><pages>105-130</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>SUMMARY We discuss a strategy to construct corotated frames for three‐dimensional continuum finite elements by minimizing deformations within the frame. We find that irrespective of the type of element and the number of nodes, using a quaternion parametrization of rotations, this minimization is naturally stated as computing the smallest eigenvalue of a 4 × 4 matrix. The simplicity of this smallest eigenvalue plays a crucial role when linearizing the kinematics. Ensuant quaternion algebra, although lengthy, results in remarkably simple formulas for projections that arise in the linearized kinematics. The exact stiffness matrix does not require computation of the second derivative of the rotation function and is also given by a simple formula. As a result, the implementation of this corotational formulation becomes particularly straightforward. Furthermore, in contrast to other results in the literature, the stiffness matrix for elements with translational DOFs is symmetric. For illustration, this corotational formulation is applied to a solid‐shell finite element, and numerical results are presented. Copyright © 2014 John Wiley &amp; Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/nme.4627</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2014-04, Vol.98 (2), p.105-130
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_miscellaneous_1671493086
source Wiley Online Library Journals Frontfile Complete
subjects Continuums
corotational
eigenvalue
Eigenvalues
Finite element method
Frames
Mathematical analysis
Mathematical models
minimization
projection
quaternion
solid-shell
Stiffness matrix
symmetric stiffness matrix
Three dimensional
title On best-fit corotated frames for 3D continuum finite elements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A41%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20best-fit%20corotated%20frames%20for%203D%20continuum%20finite%20elements&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Mostafa,%20M.&rft.date=2014-04-13&rft.volume=98&rft.issue=2&rft.spage=105&rft.epage=130&rft.pages=105-130&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.4627&rft_dat=%3Cproquest_cross%3E3242132051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1505482655&rft_id=info:pmid/&rfr_iscdi=true