On best-fit corotated frames for 3D continuum finite elements
SUMMARY We discuss a strategy to construct corotated frames for three‐dimensional continuum finite elements by minimizing deformations within the frame. We find that irrespective of the type of element and the number of nodes, using a quaternion parametrization of rotations, this minimization is nat...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2014-04, Vol.98 (2), p.105-130 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 130 |
---|---|
container_issue | 2 |
container_start_page | 105 |
container_title | International journal for numerical methods in engineering |
container_volume | 98 |
creator | Mostafa, M. Sivaselvan, M.V. |
description | SUMMARY
We discuss a strategy to construct corotated frames for three‐dimensional continuum finite elements by minimizing deformations within the frame. We find that irrespective of the type of element and the number of nodes, using a quaternion parametrization of rotations, this minimization is naturally stated as computing the smallest eigenvalue of a 4 × 4 matrix. The simplicity of this smallest eigenvalue plays a crucial role when linearizing the kinematics. Ensuant quaternion algebra, although lengthy, results in remarkably simple formulas for projections that arise in the linearized kinematics. The exact stiffness matrix does not require computation of the second derivative of the rotation function and is also given by a simple formula. As a result, the implementation of this corotational formulation becomes particularly straightforward. Furthermore, in contrast to other results in the literature, the stiffness matrix for elements with translational DOFs is symmetric. For illustration, this corotational formulation is applied to a solid‐shell finite element, and numerical results are presented. Copyright © 2014 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nme.4627 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671493086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3242132051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3647-ff2601554c86e4f6f625b50db337a41efa04de6cc31b0a11ebf9e8458139f54c3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKvgTxhw42ZqMnnNLFxIW6ugLWKl3YXM9AamzqMmGbT_3pSKouDqwr3fPZxzEDoneEAwTq6aGgZMJPIA9QjOZIwTLA9RL5yymGcpOUYnzq0xJoRj2kPXsybKwfnYlD4qWtt67WEVGatrcJFpbURHYd_4sum6OjJlU3qIoIIaGu9O0ZHRlYOzr9lHL7fj-fAufphN7oc3D3FBBZOxMYnAhHNWpAKYEUYkPOd4lVMqNSNgNGYrEEVBSY41IZCbDFLGU0IzE75oH13udTe2feuCXVWXroCq0g20nVNESMIyilMR0Is_6LrtbBPcqZCYszQRnP8IFrZ1zoJRG1vW2m4VwWrXowo9ql2PAY336HtZwfZfTk0fx7_50nn4-Oa1fVVCUsnVYjpRTD4vlvOnpRrRT0WPgUc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1505482655</pqid></control><display><type>article</type><title>On best-fit corotated frames for 3D continuum finite elements</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mostafa, M. ; Sivaselvan, M.V.</creator><creatorcontrib>Mostafa, M. ; Sivaselvan, M.V.</creatorcontrib><description>SUMMARY
We discuss a strategy to construct corotated frames for three‐dimensional continuum finite elements by minimizing deformations within the frame. We find that irrespective of the type of element and the number of nodes, using a quaternion parametrization of rotations, this minimization is naturally stated as computing the smallest eigenvalue of a 4 × 4 matrix. The simplicity of this smallest eigenvalue plays a crucial role when linearizing the kinematics. Ensuant quaternion algebra, although lengthy, results in remarkably simple formulas for projections that arise in the linearized kinematics. The exact stiffness matrix does not require computation of the second derivative of the rotation function and is also given by a simple formula. As a result, the implementation of this corotational formulation becomes particularly straightforward. Furthermore, in contrast to other results in the literature, the stiffness matrix for elements with translational DOFs is symmetric. For illustration, this corotational formulation is applied to a solid‐shell finite element, and numerical results are presented. Copyright © 2014 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.4627</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>Continuums ; corotational ; eigenvalue ; Eigenvalues ; Finite element method ; Frames ; Mathematical analysis ; Mathematical models ; minimization ; projection ; quaternion ; solid-shell ; Stiffness matrix ; symmetric stiffness matrix ; Three dimensional</subject><ispartof>International journal for numerical methods in engineering, 2014-04, Vol.98 (2), p.105-130</ispartof><rights>Copyright © 2014 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3647-ff2601554c86e4f6f625b50db337a41efa04de6cc31b0a11ebf9e8458139f54c3</citedby><cites>FETCH-LOGICAL-c3647-ff2601554c86e4f6f625b50db337a41efa04de6cc31b0a11ebf9e8458139f54c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.4627$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.4627$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Mostafa, M.</creatorcontrib><creatorcontrib>Sivaselvan, M.V.</creatorcontrib><title>On best-fit corotated frames for 3D continuum finite elements</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>SUMMARY
We discuss a strategy to construct corotated frames for three‐dimensional continuum finite elements by minimizing deformations within the frame. We find that irrespective of the type of element and the number of nodes, using a quaternion parametrization of rotations, this minimization is naturally stated as computing the smallest eigenvalue of a 4 × 4 matrix. The simplicity of this smallest eigenvalue plays a crucial role when linearizing the kinematics. Ensuant quaternion algebra, although lengthy, results in remarkably simple formulas for projections that arise in the linearized kinematics. The exact stiffness matrix does not require computation of the second derivative of the rotation function and is also given by a simple formula. As a result, the implementation of this corotational formulation becomes particularly straightforward. Furthermore, in contrast to other results in the literature, the stiffness matrix for elements with translational DOFs is symmetric. For illustration, this corotational formulation is applied to a solid‐shell finite element, and numerical results are presented. Copyright © 2014 John Wiley & Sons, Ltd.</description><subject>Continuums</subject><subject>corotational</subject><subject>eigenvalue</subject><subject>Eigenvalues</subject><subject>Finite element method</subject><subject>Frames</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>minimization</subject><subject>projection</subject><subject>quaternion</subject><subject>solid-shell</subject><subject>Stiffness matrix</subject><subject>symmetric stiffness matrix</subject><subject>Three dimensional</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKvgTxhw42ZqMnnNLFxIW6ugLWKl3YXM9AamzqMmGbT_3pSKouDqwr3fPZxzEDoneEAwTq6aGgZMJPIA9QjOZIwTLA9RL5yymGcpOUYnzq0xJoRj2kPXsybKwfnYlD4qWtt67WEVGatrcJFpbURHYd_4sum6OjJlU3qIoIIaGu9O0ZHRlYOzr9lHL7fj-fAufphN7oc3D3FBBZOxMYnAhHNWpAKYEUYkPOd4lVMqNSNgNGYrEEVBSY41IZCbDFLGU0IzE75oH13udTe2feuCXVWXroCq0g20nVNESMIyilMR0Is_6LrtbBPcqZCYszQRnP8IFrZ1zoJRG1vW2m4VwWrXowo9ql2PAY336HtZwfZfTk0fx7_50nn4-Oa1fVVCUsnVYjpRTD4vlvOnpRrRT0WPgUc</recordid><startdate>20140413</startdate><enddate>20140413</enddate><creator>Mostafa, M.</creator><creator>Sivaselvan, M.V.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140413</creationdate><title>On best-fit corotated frames for 3D continuum finite elements</title><author>Mostafa, M. ; Sivaselvan, M.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3647-ff2601554c86e4f6f625b50db337a41efa04de6cc31b0a11ebf9e8458139f54c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Continuums</topic><topic>corotational</topic><topic>eigenvalue</topic><topic>Eigenvalues</topic><topic>Finite element method</topic><topic>Frames</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>minimization</topic><topic>projection</topic><topic>quaternion</topic><topic>solid-shell</topic><topic>Stiffness matrix</topic><topic>symmetric stiffness matrix</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mostafa, M.</creatorcontrib><creatorcontrib>Sivaselvan, M.V.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mostafa, M.</au><au>Sivaselvan, M.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On best-fit corotated frames for 3D continuum finite elements</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2014-04-13</date><risdate>2014</risdate><volume>98</volume><issue>2</issue><spage>105</spage><epage>130</epage><pages>105-130</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>SUMMARY
We discuss a strategy to construct corotated frames for three‐dimensional continuum finite elements by minimizing deformations within the frame. We find that irrespective of the type of element and the number of nodes, using a quaternion parametrization of rotations, this minimization is naturally stated as computing the smallest eigenvalue of a 4 × 4 matrix. The simplicity of this smallest eigenvalue plays a crucial role when linearizing the kinematics. Ensuant quaternion algebra, although lengthy, results in remarkably simple formulas for projections that arise in the linearized kinematics. The exact stiffness matrix does not require computation of the second derivative of the rotation function and is also given by a simple formula. As a result, the implementation of this corotational formulation becomes particularly straightforward. Furthermore, in contrast to other results in the literature, the stiffness matrix for elements with translational DOFs is symmetric. For illustration, this corotational formulation is applied to a solid‐shell finite element, and numerical results are presented. Copyright © 2014 John Wiley & Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/nme.4627</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2014-04, Vol.98 (2), p.105-130 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671493086 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Continuums corotational eigenvalue Eigenvalues Finite element method Frames Mathematical analysis Mathematical models minimization projection quaternion solid-shell Stiffness matrix symmetric stiffness matrix Three dimensional |
title | On best-fit corotated frames for 3D continuum finite elements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A41%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20best-fit%20corotated%20frames%20for%203D%20continuum%20finite%20elements&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Mostafa,%20M.&rft.date=2014-04-13&rft.volume=98&rft.issue=2&rft.spage=105&rft.epage=130&rft.pages=105-130&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.4627&rft_dat=%3Cproquest_cross%3E3242132051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1505482655&rft_id=info:pmid/&rfr_iscdi=true |