Internal resonance based sensing in non-contact atomic force microscopy

In this letter, the nonlinear dynamics of a non-uniform micro-cantilever for atomic force microscopy is investigated numerically for a non-contact mode of operation. A step-like heterogeneity in the cantilever longitudinal direction yields conditions for both 3:1 and 2:1 internal resonances that gov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2012-07, Vol.101 (5), p.53106
Hauptverfasser: Hacker, E., Gottlieb, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 53106
container_title Applied physics letters
container_volume 101
creator Hacker, E.
Gottlieb, O.
description In this letter, the nonlinear dynamics of a non-uniform micro-cantilever for atomic force microscopy is investigated numerically for a non-contact mode of operation. A step-like heterogeneity in the cantilever longitudinal direction yields conditions for both 3:1 and 2:1 internal resonances that govern quasiperiodic energy transfer between the first and second structural bending modes. Thus, quasiperiodic micro-cantilever response can enable multiple function sensing, and possible increased accuracy of time-varying forces via single frequency base excitation.
doi_str_mv 10.1063/1.4739416
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671492062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671492062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-d853bf884c6878073fdae7a253b9555e117ea2e6e38b3f5e5e466c323f3f92c93</originalsourceid><addsrcrecordid>eNotkM1OwzAQhC0EEqVw4A18hEOKNxv_5IgqKJUqcYGz5bhrFJTaxU4PfXtStafdHX07Gg1jjyAWIBS-wKLR2DagrtgMhNYVAphrNhNCYKVaCbfsrpTf6ZQ14oyt1nGkHN3AM5UUXfTEO1doywvF0scf3kceU6x8iqPzI3dj2vWeh5QnctpyKj7tj_fsJrih0MNlztn3-9vX8qPafK7Wy9dN5bE2Y7U1ErtgTOOV0UZoDFtH2tWT2kopCUCTq0kRmg6DJEmNUtMrBgxt7Vucs6ez7z6nvwOV0e764mkYXKR0KBaUhqathaon9PmMnjKWTMHuc79z-WhB2FNZFuylLPwHIUxbjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671492062</pqid></control><display><type>article</type><title>Internal resonance based sensing in non-contact atomic force microscopy</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Hacker, E. ; Gottlieb, O.</creator><creatorcontrib>Hacker, E. ; Gottlieb, O.</creatorcontrib><description>In this letter, the nonlinear dynamics of a non-uniform micro-cantilever for atomic force microscopy is investigated numerically for a non-contact mode of operation. A step-like heterogeneity in the cantilever longitudinal direction yields conditions for both 3:1 and 2:1 internal resonances that govern quasiperiodic energy transfer between the first and second structural bending modes. Thus, quasiperiodic micro-cantilever response can enable multiple function sensing, and possible increased accuracy of time-varying forces via single frequency base excitation.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4739416</identifier><language>eng</language><subject>Atomic force microscopy ; Bending ; Detection ; Energy transfer ; Heterogeneity ; Mathematical analysis ; Mathematical models ; Nonlinear dynamics</subject><ispartof>Applied physics letters, 2012-07, Vol.101 (5), p.53106</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-d853bf884c6878073fdae7a253b9555e117ea2e6e38b3f5e5e466c323f3f92c93</citedby><cites>FETCH-LOGICAL-c328t-d853bf884c6878073fdae7a253b9555e117ea2e6e38b3f5e5e466c323f3f92c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Hacker, E.</creatorcontrib><creatorcontrib>Gottlieb, O.</creatorcontrib><title>Internal resonance based sensing in non-contact atomic force microscopy</title><title>Applied physics letters</title><description>In this letter, the nonlinear dynamics of a non-uniform micro-cantilever for atomic force microscopy is investigated numerically for a non-contact mode of operation. A step-like heterogeneity in the cantilever longitudinal direction yields conditions for both 3:1 and 2:1 internal resonances that govern quasiperiodic energy transfer between the first and second structural bending modes. Thus, quasiperiodic micro-cantilever response can enable multiple function sensing, and possible increased accuracy of time-varying forces via single frequency base excitation.</description><subject>Atomic force microscopy</subject><subject>Bending</subject><subject>Detection</subject><subject>Energy transfer</subject><subject>Heterogeneity</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear dynamics</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNotkM1OwzAQhC0EEqVw4A18hEOKNxv_5IgqKJUqcYGz5bhrFJTaxU4PfXtStafdHX07Gg1jjyAWIBS-wKLR2DagrtgMhNYVAphrNhNCYKVaCbfsrpTf6ZQ14oyt1nGkHN3AM5UUXfTEO1doywvF0scf3kceU6x8iqPzI3dj2vWeh5QnctpyKj7tj_fsJrih0MNlztn3-9vX8qPafK7Wy9dN5bE2Y7U1ErtgTOOV0UZoDFtH2tWT2kopCUCTq0kRmg6DJEmNUtMrBgxt7Vucs6ez7z6nvwOV0e764mkYXKR0KBaUhqathaon9PmMnjKWTMHuc79z-WhB2FNZFuylLPwHIUxbjQ</recordid><startdate>20120730</startdate><enddate>20120730</enddate><creator>Hacker, E.</creator><creator>Gottlieb, O.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20120730</creationdate><title>Internal resonance based sensing in non-contact atomic force microscopy</title><author>Hacker, E. ; Gottlieb, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-d853bf884c6878073fdae7a253b9555e117ea2e6e38b3f5e5e466c323f3f92c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Atomic force microscopy</topic><topic>Bending</topic><topic>Detection</topic><topic>Energy transfer</topic><topic>Heterogeneity</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hacker, E.</creatorcontrib><creatorcontrib>Gottlieb, O.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hacker, E.</au><au>Gottlieb, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Internal resonance based sensing in non-contact atomic force microscopy</atitle><jtitle>Applied physics letters</jtitle><date>2012-07-30</date><risdate>2012</risdate><volume>101</volume><issue>5</issue><spage>53106</spage><pages>53106-</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>In this letter, the nonlinear dynamics of a non-uniform micro-cantilever for atomic force microscopy is investigated numerically for a non-contact mode of operation. A step-like heterogeneity in the cantilever longitudinal direction yields conditions for both 3:1 and 2:1 internal resonances that govern quasiperiodic energy transfer between the first and second structural bending modes. Thus, quasiperiodic micro-cantilever response can enable multiple function sensing, and possible increased accuracy of time-varying forces via single frequency base excitation.</abstract><doi>10.1063/1.4739416</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2012-07, Vol.101 (5), p.53106
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_miscellaneous_1671492062
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Atomic force microscopy
Bending
Detection
Energy transfer
Heterogeneity
Mathematical analysis
Mathematical models
Nonlinear dynamics
title Internal resonance based sensing in non-contact atomic force microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A53%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Internal%20resonance%20based%20sensing%20in%20non-contact%20atomic%20force%20microscopy&rft.jtitle=Applied%20physics%20letters&rft.au=Hacker,%20E.&rft.date=2012-07-30&rft.volume=101&rft.issue=5&rft.spage=53106&rft.pages=53106-&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4739416&rft_dat=%3Cproquest_cross%3E1671492062%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671492062&rft_id=info:pmid/&rfr_iscdi=true