Density-ratio matching under the Bregman divergence: a unified framework of density-ratio estimation
Estimation of the ratio of probability densities has attracted a great deal of attention since it can be used for addressing various statistical paradigms. A naive approach to density-ratio approximation is to first estimate numerator and denominator densities separately and then take their ratio. H...
Gespeichert in:
Veröffentlicht in: | Annals of the Institute of Statistical Mathematics 2012-10, Vol.64 (5), p.1009-1044 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1044 |
---|---|
container_issue | 5 |
container_start_page | 1009 |
container_title | Annals of the Institute of Statistical Mathematics |
container_volume | 64 |
creator | Sugiyama, Masashi Suzuki, Taiji Kanamori, Takafumi |
description | Estimation of the ratio of probability densities has attracted a great deal of attention since it can be used for addressing various statistical paradigms. A naive approach to density-ratio approximation is to first estimate numerator and denominator densities separately and then take their ratio. However, this two-step approach does not perform well in practice, and methods for directly estimating density ratios without density estimation have been explored. In this paper, we first give a comprehensive review of existing density-ratio estimation methods and discuss their pros and cons. Then we propose a new framework of density-ratio estimation in which a density-ratio model is fitted to the true density-ratio under the Bregman divergence. Our new framework includes existing approaches as special cases, and is substantially more general. Finally, we develop a robust density-ratio estimation method under the power divergence, which is a novel instance in our framework. |
doi_str_mv | 10.1007/s10463-011-0343-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671491741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726547241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-34238125c92fea0dae9fa19eaad8ab041c325c7cdf443e00b1af6c03d0e56eac3</originalsourceid><addsrcrecordid>eNp1kE9PGzEQxS3USqS0H6A3S730Ypixvf-4QYBSKRKXcrYce5wszXqDvaHKt8dReqBIPdny-70348fYV4RzBGguMoKulQBEAUor0Z6wGVaNFB1U8gObAUgQqrycsk85PwGAkkrOmL-hmPtpL5Kd-pEPdnLrPq74LnpKfFoTv060Gmzkvn-htKLo6JLbovehJ89DsgP9GdNvPgbu_8miPPXD4RY_s4_BbjJ9-Xuesce721_ze7F4-PFzfrUQTrf1JJSWqkVZuU4GsuAtdcFiR9b61i5Bo1NFbJwPWisCWKINtQPlgaqarFNn7Psxd5vG512Zb4Y-O9psbKRxlw3WDeoOG40F_fYOfRp3KZbtDIKCBhuoDhQeKZfGnBMFs03lT2lfIHPo3Rx7N6V3c-jdtMUjj55c2Lii9Db5f6ZXfJ2Glw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030717051</pqid></control><display><type>article</type><title>Density-ratio matching under the Bregman divergence: a unified framework of density-ratio estimation</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sugiyama, Masashi ; Suzuki, Taiji ; Kanamori, Takafumi</creator><creatorcontrib>Sugiyama, Masashi ; Suzuki, Taiji ; Kanamori, Takafumi</creatorcontrib><description>Estimation of the ratio of probability densities has attracted a great deal of attention since it can be used for addressing various statistical paradigms. A naive approach to density-ratio approximation is to first estimate numerator and denominator densities separately and then take their ratio. However, this two-step approach does not perform well in practice, and methods for directly estimating density ratios without density estimation have been explored. In this paper, we first give a comprehensive review of existing density-ratio estimation methods and discuss their pros and cons. Then we propose a new framework of density-ratio estimation in which a density-ratio model is fitted to the true density-ratio under the Bregman divergence. Our new framework includes existing approaches as special cases, and is substantially more general. Finally, we develop a robust density-ratio estimation method under the power divergence, which is a novel instance in our framework.</description><identifier>ISSN: 0020-3157</identifier><identifier>EISSN: 1572-9052</identifier><identifier>DOI: 10.1007/s10463-011-0343-8</identifier><language>eng</language><publisher>Japan: Springer Japan</publisher><subject>Approximation ; Data processing ; Density ; Density ratio ; Discriminant analysis ; Divergence ; Economics ; Estimates ; Finance ; Insurance ; Management ; Matching ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Methods ; Optimization ; Random variables ; Statistics ; Statistics for Business</subject><ispartof>Annals of the Institute of Statistical Mathematics, 2012-10, Vol.64 (5), p.1009-1044</ispartof><rights>The Institute of Statistical Mathematics, Tokyo 2011</rights><rights>The Institute of Statistical Mathematics, Tokyo 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-34238125c92fea0dae9fa19eaad8ab041c325c7cdf443e00b1af6c03d0e56eac3</citedby><cites>FETCH-LOGICAL-c486t-34238125c92fea0dae9fa19eaad8ab041c325c7cdf443e00b1af6c03d0e56eac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10463-011-0343-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10463-011-0343-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Sugiyama, Masashi</creatorcontrib><creatorcontrib>Suzuki, Taiji</creatorcontrib><creatorcontrib>Kanamori, Takafumi</creatorcontrib><title>Density-ratio matching under the Bregman divergence: a unified framework of density-ratio estimation</title><title>Annals of the Institute of Statistical Mathematics</title><addtitle>Ann Inst Stat Math</addtitle><description>Estimation of the ratio of probability densities has attracted a great deal of attention since it can be used for addressing various statistical paradigms. A naive approach to density-ratio approximation is to first estimate numerator and denominator densities separately and then take their ratio. However, this two-step approach does not perform well in practice, and methods for directly estimating density ratios without density estimation have been explored. In this paper, we first give a comprehensive review of existing density-ratio estimation methods and discuss their pros and cons. Then we propose a new framework of density-ratio estimation in which a density-ratio model is fitted to the true density-ratio under the Bregman divergence. Our new framework includes existing approaches as special cases, and is substantially more general. Finally, we develop a robust density-ratio estimation method under the power divergence, which is a novel instance in our framework.</description><subject>Approximation</subject><subject>Data processing</subject><subject>Density</subject><subject>Density ratio</subject><subject>Discriminant analysis</subject><subject>Divergence</subject><subject>Economics</subject><subject>Estimates</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Matching</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Optimization</subject><subject>Random variables</subject><subject>Statistics</subject><subject>Statistics for Business</subject><issn>0020-3157</issn><issn>1572-9052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9PGzEQxS3USqS0H6A3S730Ypixvf-4QYBSKRKXcrYce5wszXqDvaHKt8dReqBIPdny-70348fYV4RzBGguMoKulQBEAUor0Z6wGVaNFB1U8gObAUgQqrycsk85PwGAkkrOmL-hmPtpL5Kd-pEPdnLrPq74LnpKfFoTv060Gmzkvn-htKLo6JLbovehJ89DsgP9GdNvPgbu_8miPPXD4RY_s4_BbjJ9-Xuesce721_ze7F4-PFzfrUQTrf1JJSWqkVZuU4GsuAtdcFiR9b61i5Bo1NFbJwPWisCWKINtQPlgaqarFNn7Psxd5vG512Zb4Y-O9psbKRxlw3WDeoOG40F_fYOfRp3KZbtDIKCBhuoDhQeKZfGnBMFs03lT2lfIHPo3Rx7N6V3c-jdtMUjj55c2Lii9Db5f6ZXfJ2Glw</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Sugiyama, Masashi</creator><creator>Suzuki, Taiji</creator><creator>Kanamori, Takafumi</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20121001</creationdate><title>Density-ratio matching under the Bregman divergence: a unified framework of density-ratio estimation</title><author>Sugiyama, Masashi ; Suzuki, Taiji ; Kanamori, Takafumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-34238125c92fea0dae9fa19eaad8ab041c325c7cdf443e00b1af6c03d0e56eac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation</topic><topic>Data processing</topic><topic>Density</topic><topic>Density ratio</topic><topic>Discriminant analysis</topic><topic>Divergence</topic><topic>Economics</topic><topic>Estimates</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Matching</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Optimization</topic><topic>Random variables</topic><topic>Statistics</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sugiyama, Masashi</creatorcontrib><creatorcontrib>Suzuki, Taiji</creatorcontrib><creatorcontrib>Kanamori, Takafumi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of the Institute of Statistical Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sugiyama, Masashi</au><au>Suzuki, Taiji</au><au>Kanamori, Takafumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Density-ratio matching under the Bregman divergence: a unified framework of density-ratio estimation</atitle><jtitle>Annals of the Institute of Statistical Mathematics</jtitle><stitle>Ann Inst Stat Math</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>64</volume><issue>5</issue><spage>1009</spage><epage>1044</epage><pages>1009-1044</pages><issn>0020-3157</issn><eissn>1572-9052</eissn><abstract>Estimation of the ratio of probability densities has attracted a great deal of attention since it can be used for addressing various statistical paradigms. A naive approach to density-ratio approximation is to first estimate numerator and denominator densities separately and then take their ratio. However, this two-step approach does not perform well in practice, and methods for directly estimating density ratios without density estimation have been explored. In this paper, we first give a comprehensive review of existing density-ratio estimation methods and discuss their pros and cons. Then we propose a new framework of density-ratio estimation in which a density-ratio model is fitted to the true density-ratio under the Bregman divergence. Our new framework includes existing approaches as special cases, and is substantially more general. Finally, we develop a robust density-ratio estimation method under the power divergence, which is a novel instance in our framework.</abstract><cop>Japan</cop><pub>Springer Japan</pub><doi>10.1007/s10463-011-0343-8</doi><tpages>36</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-3157 |
ispartof | Annals of the Institute of Statistical Mathematics, 2012-10, Vol.64 (5), p.1009-1044 |
issn | 0020-3157 1572-9052 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671491741 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerLink Journals - AutoHoldings |
subjects | Approximation Data processing Density Density ratio Discriminant analysis Divergence Economics Estimates Finance Insurance Management Matching Mathematical analysis Mathematical models Mathematics Mathematics and Statistics Methods Optimization Random variables Statistics Statistics for Business |
title | Density-ratio matching under the Bregman divergence: a unified framework of density-ratio estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A48%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Density-ratio%20matching%20under%20the%20Bregman%20divergence:%20a%20unified%20framework%20of%20density-ratio%20estimation&rft.jtitle=Annals%20of%20the%20Institute%20of%20Statistical%20Mathematics&rft.au=Sugiyama,%20Masashi&rft.date=2012-10-01&rft.volume=64&rft.issue=5&rft.spage=1009&rft.epage=1044&rft.pages=1009-1044&rft.issn=0020-3157&rft.eissn=1572-9052&rft_id=info:doi/10.1007/s10463-011-0343-8&rft_dat=%3Cproquest_cross%3E2726547241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030717051&rft_id=info:pmid/&rfr_iscdi=true |