Investigation of the Stable Atmospheric Boundary Layer at Halley Antarctica
Boundary-layer measurements from the Brunt Ice Shelf, Antarctica are analyzed to determine flux–profile relationships. Dimensionless quantities are derived in the standard approach from estimates of wind shear, potential temperature gradient, Richardson number, eddy diffusivities for momentum and he...
Gespeichert in:
Veröffentlicht in: | Boundary-layer meteorology 2013-09, Vol.148 (3), p.517-539 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 539 |
---|---|
container_issue | 3 |
container_start_page | 517 |
container_title | Boundary-layer meteorology |
container_volume | 148 |
creator | Rodrigo, Javier Sanz Anderson, Philip S. |
description | Boundary-layer measurements from the Brunt Ice Shelf, Antarctica are analyzed to determine flux–profile relationships. Dimensionless quantities are derived in the standard approach from estimates of wind shear, potential temperature gradient, Richardson number, eddy diffusivities for momentum and heat, Prandtl number, mixing length and turbulent kinetic energy. Nieuwstadt local scaling theory for the stable atmospheric boundary-layer appears to work well departing only slightly from expressions found in mid-latitudes. An
E
–
l
m
single-column model of the stable boundary layer is implemented based on local scaling arguments. Simulations based on the first GEWEX Atmospheric Boundary-Layer Study case study are validated against ensemble-averaged profiles for various stability classes. A stability-dependent function of the dimensionless turbulent kinetic energy allows a better fit to the ensemble profiles. |
doi_str_mv | 10.1007/s10546-013-9831-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671488370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A343156925</galeid><sourcerecordid>A343156925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-45008c1f82595e6e1ec1dd7254e4d5860e2145ed5b7bcd619f87f8e07cfcb4843</originalsourceid><addsrcrecordid>eNqFkU-LFDEQxRtRcFz9AN4CInjpNZU_nfRxXFZ3ccCDeg6ZdGU2S08yJpmF-fZm6EVkQSSHIqnfK17qdd1boJdAqfpYgEox9BR4P2oOPX3WrUAq3oNQ7Hm3opQOfWuIl92rUu7bVYGkq-7rbXzAUsPO1pAiSZ7UOyTfq93OSNZ1n8rhDnNw5FM6xsnmE9nYE2ZiK7mx84wnso7VZleDs6-7F97OBd881ovu5-frH1c3_ebbl9ur9aZ3QkLthaRUO_CayVHigIAOpkkxKVBMUg8UGQiJk9yqrZsGGL1WXiNVzrut0IJfdB-WuYecfh2be7MPxeE824jpWAwMCoTWXNH_o0JwrjQbVUPfPUHv0zHH9pFGMTaOXCpo1OVC7eyMJkSfaraunQn3waWIPrT3NRcc5DAy2QSwCFxOpWT05pDDvi3SADXn6MwSnWnRmXN05uz6_aMVW5ydfbbRhfJHyNQg9SjOZtjCldaKO8x_Wf7n8N9cOKZB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1422993571</pqid></control><display><type>article</type><title>Investigation of the Stable Atmospheric Boundary Layer at Halley Antarctica</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rodrigo, Javier Sanz ; Anderson, Philip S.</creator><creatorcontrib>Rodrigo, Javier Sanz ; Anderson, Philip S.</creatorcontrib><description>Boundary-layer measurements from the Brunt Ice Shelf, Antarctica are analyzed to determine flux–profile relationships. Dimensionless quantities are derived in the standard approach from estimates of wind shear, potential temperature gradient, Richardson number, eddy diffusivities for momentum and heat, Prandtl number, mixing length and turbulent kinetic energy. Nieuwstadt local scaling theory for the stable atmospheric boundary-layer appears to work well departing only slightly from expressions found in mid-latitudes. An
E
–
l
m
single-column model of the stable boundary layer is implemented based on local scaling arguments. Simulations based on the first GEWEX Atmospheric Boundary-Layer Study case study are validated against ensemble-averaged profiles for various stability classes. A stability-dependent function of the dimensionless turbulent kinetic energy allows a better fit to the ensemble profiles.</description><identifier>ISSN: 0006-8314</identifier><identifier>EISSN: 1573-1472</identifier><identifier>DOI: 10.1007/s10546-013-9831-0</identifier><identifier>CODEN: BLMEBR</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Antarctica ; Atmospheric boundary layer ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Atmospherics ; Boundaries ; Boundary layers ; Case studies ; Computational fluid dynamics ; Convection, turbulence, diffusion. Boundary layer structure and dynamics ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Ice shelves ; Icebergs ; Investigations ; Kinetic energy ; Meteorology ; Planetary boundary layer ; Temperature ; Temperature gradient ; Temperature gradients ; Turbulence ; Wind shear</subject><ispartof>Boundary-layer meteorology, 2013-09, Vol.148 (3), p.517-539</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2013 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-45008c1f82595e6e1ec1dd7254e4d5860e2145ed5b7bcd619f87f8e07cfcb4843</citedby><cites>FETCH-LOGICAL-c451t-45008c1f82595e6e1ec1dd7254e4d5860e2145ed5b7bcd619f87f8e07cfcb4843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10546-013-9831-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10546-013-9831-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27658941$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodrigo, Javier Sanz</creatorcontrib><creatorcontrib>Anderson, Philip S.</creatorcontrib><title>Investigation of the Stable Atmospheric Boundary Layer at Halley Antarctica</title><title>Boundary-layer meteorology</title><addtitle>Boundary-Layer Meteorol</addtitle><description>Boundary-layer measurements from the Brunt Ice Shelf, Antarctica are analyzed to determine flux–profile relationships. Dimensionless quantities are derived in the standard approach from estimates of wind shear, potential temperature gradient, Richardson number, eddy diffusivities for momentum and heat, Prandtl number, mixing length and turbulent kinetic energy. Nieuwstadt local scaling theory for the stable atmospheric boundary-layer appears to work well departing only slightly from expressions found in mid-latitudes. An
E
–
l
m
single-column model of the stable boundary layer is implemented based on local scaling arguments. Simulations based on the first GEWEX Atmospheric Boundary-Layer Study case study are validated against ensemble-averaged profiles for various stability classes. A stability-dependent function of the dimensionless turbulent kinetic energy allows a better fit to the ensemble profiles.</description><subject>Analysis</subject><subject>Antarctica</subject><subject>Atmospheric boundary layer</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Atmospherics</subject><subject>Boundaries</subject><subject>Boundary layers</subject><subject>Case studies</subject><subject>Computational fluid dynamics</subject><subject>Convection, turbulence, diffusion. Boundary layer structure and dynamics</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Ice shelves</subject><subject>Icebergs</subject><subject>Investigations</subject><subject>Kinetic energy</subject><subject>Meteorology</subject><subject>Planetary boundary layer</subject><subject>Temperature</subject><subject>Temperature gradient</subject><subject>Temperature gradients</subject><subject>Turbulence</subject><subject>Wind shear</subject><issn>0006-8314</issn><issn>1573-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU-LFDEQxRtRcFz9AN4CInjpNZU_nfRxXFZ3ccCDeg6ZdGU2S08yJpmF-fZm6EVkQSSHIqnfK17qdd1boJdAqfpYgEox9BR4P2oOPX3WrUAq3oNQ7Hm3opQOfWuIl92rUu7bVYGkq-7rbXzAUsPO1pAiSZ7UOyTfq93OSNZ1n8rhDnNw5FM6xsnmE9nYE2ZiK7mx84wnso7VZleDs6-7F97OBd881ovu5-frH1c3_ebbl9ur9aZ3QkLthaRUO_CayVHigIAOpkkxKVBMUg8UGQiJk9yqrZsGGL1WXiNVzrut0IJfdB-WuYecfh2be7MPxeE824jpWAwMCoTWXNH_o0JwrjQbVUPfPUHv0zHH9pFGMTaOXCpo1OVC7eyMJkSfaraunQn3waWIPrT3NRcc5DAy2QSwCFxOpWT05pDDvi3SADXn6MwSnWnRmXN05uz6_aMVW5ydfbbRhfJHyNQg9SjOZtjCldaKO8x_Wf7n8N9cOKZB</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Rodrigo, Javier Sanz</creator><creator>Anderson, Philip S.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20130901</creationdate><title>Investigation of the Stable Atmospheric Boundary Layer at Halley Antarctica</title><author>Rodrigo, Javier Sanz ; Anderson, Philip S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-45008c1f82595e6e1ec1dd7254e4d5860e2145ed5b7bcd619f87f8e07cfcb4843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Antarctica</topic><topic>Atmospheric boundary layer</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Atmospherics</topic><topic>Boundaries</topic><topic>Boundary layers</topic><topic>Case studies</topic><topic>Computational fluid dynamics</topic><topic>Convection, turbulence, diffusion. Boundary layer structure and dynamics</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Ice shelves</topic><topic>Icebergs</topic><topic>Investigations</topic><topic>Kinetic energy</topic><topic>Meteorology</topic><topic>Planetary boundary layer</topic><topic>Temperature</topic><topic>Temperature gradient</topic><topic>Temperature gradients</topic><topic>Turbulence</topic><topic>Wind shear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigo, Javier Sanz</creatorcontrib><creatorcontrib>Anderson, Philip S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Boundary-layer meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigo, Javier Sanz</au><au>Anderson, Philip S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of the Stable Atmospheric Boundary Layer at Halley Antarctica</atitle><jtitle>Boundary-layer meteorology</jtitle><stitle>Boundary-Layer Meteorol</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>148</volume><issue>3</issue><spage>517</spage><epage>539</epage><pages>517-539</pages><issn>0006-8314</issn><eissn>1573-1472</eissn><coden>BLMEBR</coden><abstract>Boundary-layer measurements from the Brunt Ice Shelf, Antarctica are analyzed to determine flux–profile relationships. Dimensionless quantities are derived in the standard approach from estimates of wind shear, potential temperature gradient, Richardson number, eddy diffusivities for momentum and heat, Prandtl number, mixing length and turbulent kinetic energy. Nieuwstadt local scaling theory for the stable atmospheric boundary-layer appears to work well departing only slightly from expressions found in mid-latitudes. An
E
–
l
m
single-column model of the stable boundary layer is implemented based on local scaling arguments. Simulations based on the first GEWEX Atmospheric Boundary-Layer Study case study are validated against ensemble-averaged profiles for various stability classes. A stability-dependent function of the dimensionless turbulent kinetic energy allows a better fit to the ensemble profiles.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10546-013-9831-0</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-8314 |
ispartof | Boundary-layer meteorology, 2013-09, Vol.148 (3), p.517-539 |
issn | 0006-8314 1573-1472 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671488370 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Antarctica Atmospheric boundary layer Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Atmospherics Boundaries Boundary layers Case studies Computational fluid dynamics Convection, turbulence, diffusion. Boundary layer structure and dynamics Earth and Environmental Science Earth Sciences Earth, ocean, space Exact sciences and technology External geophysics Ice shelves Icebergs Investigations Kinetic energy Meteorology Planetary boundary layer Temperature Temperature gradient Temperature gradients Turbulence Wind shear |
title | Investigation of the Stable Atmospheric Boundary Layer at Halley Antarctica |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A07%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20the%20Stable%20Atmospheric%20Boundary%20Layer%20at%20Halley%20Antarctica&rft.jtitle=Boundary-layer%20meteorology&rft.au=Rodrigo,%20Javier%20Sanz&rft.date=2013-09-01&rft.volume=148&rft.issue=3&rft.spage=517&rft.epage=539&rft.pages=517-539&rft.issn=0006-8314&rft.eissn=1573-1472&rft.coden=BLMEBR&rft_id=info:doi/10.1007/s10546-013-9831-0&rft_dat=%3Cgale_proqu%3EA343156925%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1422993571&rft_id=info:pmid/&rft_galeid=A343156925&rfr_iscdi=true |