Investigation of the Stable Atmospheric Boundary Layer at Halley Antarctica

Boundary-layer measurements from the Brunt Ice Shelf, Antarctica are analyzed to determine flux–profile relationships. Dimensionless quantities are derived in the standard approach from estimates of wind shear, potential temperature gradient, Richardson number, eddy diffusivities for momentum and he...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boundary-layer meteorology 2013-09, Vol.148 (3), p.517-539
Hauptverfasser: Rodrigo, Javier Sanz, Anderson, Philip S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 539
container_issue 3
container_start_page 517
container_title Boundary-layer meteorology
container_volume 148
creator Rodrigo, Javier Sanz
Anderson, Philip S.
description Boundary-layer measurements from the Brunt Ice Shelf, Antarctica are analyzed to determine flux–profile relationships. Dimensionless quantities are derived in the standard approach from estimates of wind shear, potential temperature gradient, Richardson number, eddy diffusivities for momentum and heat, Prandtl number, mixing length and turbulent kinetic energy. Nieuwstadt local scaling theory for the stable atmospheric boundary-layer appears to work well departing only slightly from expressions found in mid-latitudes. An E – l m single-column model of the stable boundary layer is implemented based on local scaling arguments. Simulations based on the first GEWEX Atmospheric Boundary-Layer Study case study are validated against ensemble-averaged profiles for various stability classes. A stability-dependent function of the dimensionless turbulent kinetic energy allows a better fit to the ensemble profiles.
doi_str_mv 10.1007/s10546-013-9831-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671488370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A343156925</galeid><sourcerecordid>A343156925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-45008c1f82595e6e1ec1dd7254e4d5860e2145ed5b7bcd619f87f8e07cfcb4843</originalsourceid><addsrcrecordid>eNqFkU-LFDEQxRtRcFz9AN4CInjpNZU_nfRxXFZ3ccCDeg6ZdGU2S08yJpmF-fZm6EVkQSSHIqnfK17qdd1boJdAqfpYgEox9BR4P2oOPX3WrUAq3oNQ7Hm3opQOfWuIl92rUu7bVYGkq-7rbXzAUsPO1pAiSZ7UOyTfq93OSNZ1n8rhDnNw5FM6xsnmE9nYE2ZiK7mx84wnso7VZleDs6-7F97OBd881ovu5-frH1c3_ebbl9ur9aZ3QkLthaRUO_CayVHigIAOpkkxKVBMUg8UGQiJk9yqrZsGGL1WXiNVzrut0IJfdB-WuYecfh2be7MPxeE824jpWAwMCoTWXNH_o0JwrjQbVUPfPUHv0zHH9pFGMTaOXCpo1OVC7eyMJkSfaraunQn3waWIPrT3NRcc5DAy2QSwCFxOpWT05pDDvi3SADXn6MwSnWnRmXN05uz6_aMVW5ydfbbRhfJHyNQg9SjOZtjCldaKO8x_Wf7n8N9cOKZB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1422993571</pqid></control><display><type>article</type><title>Investigation of the Stable Atmospheric Boundary Layer at Halley Antarctica</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rodrigo, Javier Sanz ; Anderson, Philip S.</creator><creatorcontrib>Rodrigo, Javier Sanz ; Anderson, Philip S.</creatorcontrib><description>Boundary-layer measurements from the Brunt Ice Shelf, Antarctica are analyzed to determine flux–profile relationships. Dimensionless quantities are derived in the standard approach from estimates of wind shear, potential temperature gradient, Richardson number, eddy diffusivities for momentum and heat, Prandtl number, mixing length and turbulent kinetic energy. Nieuwstadt local scaling theory for the stable atmospheric boundary-layer appears to work well departing only slightly from expressions found in mid-latitudes. An E – l m single-column model of the stable boundary layer is implemented based on local scaling arguments. Simulations based on the first GEWEX Atmospheric Boundary-Layer Study case study are validated against ensemble-averaged profiles for various stability classes. A stability-dependent function of the dimensionless turbulent kinetic energy allows a better fit to the ensemble profiles.</description><identifier>ISSN: 0006-8314</identifier><identifier>EISSN: 1573-1472</identifier><identifier>DOI: 10.1007/s10546-013-9831-0</identifier><identifier>CODEN: BLMEBR</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Antarctica ; Atmospheric boundary layer ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Atmospherics ; Boundaries ; Boundary layers ; Case studies ; Computational fluid dynamics ; Convection, turbulence, diffusion. Boundary layer structure and dynamics ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Ice shelves ; Icebergs ; Investigations ; Kinetic energy ; Meteorology ; Planetary boundary layer ; Temperature ; Temperature gradient ; Temperature gradients ; Turbulence ; Wind shear</subject><ispartof>Boundary-layer meteorology, 2013-09, Vol.148 (3), p.517-539</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2013 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-45008c1f82595e6e1ec1dd7254e4d5860e2145ed5b7bcd619f87f8e07cfcb4843</citedby><cites>FETCH-LOGICAL-c451t-45008c1f82595e6e1ec1dd7254e4d5860e2145ed5b7bcd619f87f8e07cfcb4843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10546-013-9831-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10546-013-9831-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27658941$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodrigo, Javier Sanz</creatorcontrib><creatorcontrib>Anderson, Philip S.</creatorcontrib><title>Investigation of the Stable Atmospheric Boundary Layer at Halley Antarctica</title><title>Boundary-layer meteorology</title><addtitle>Boundary-Layer Meteorol</addtitle><description>Boundary-layer measurements from the Brunt Ice Shelf, Antarctica are analyzed to determine flux–profile relationships. Dimensionless quantities are derived in the standard approach from estimates of wind shear, potential temperature gradient, Richardson number, eddy diffusivities for momentum and heat, Prandtl number, mixing length and turbulent kinetic energy. Nieuwstadt local scaling theory for the stable atmospheric boundary-layer appears to work well departing only slightly from expressions found in mid-latitudes. An E – l m single-column model of the stable boundary layer is implemented based on local scaling arguments. Simulations based on the first GEWEX Atmospheric Boundary-Layer Study case study are validated against ensemble-averaged profiles for various stability classes. A stability-dependent function of the dimensionless turbulent kinetic energy allows a better fit to the ensemble profiles.</description><subject>Analysis</subject><subject>Antarctica</subject><subject>Atmospheric boundary layer</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Atmospherics</subject><subject>Boundaries</subject><subject>Boundary layers</subject><subject>Case studies</subject><subject>Computational fluid dynamics</subject><subject>Convection, turbulence, diffusion. Boundary layer structure and dynamics</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Ice shelves</subject><subject>Icebergs</subject><subject>Investigations</subject><subject>Kinetic energy</subject><subject>Meteorology</subject><subject>Planetary boundary layer</subject><subject>Temperature</subject><subject>Temperature gradient</subject><subject>Temperature gradients</subject><subject>Turbulence</subject><subject>Wind shear</subject><issn>0006-8314</issn><issn>1573-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU-LFDEQxRtRcFz9AN4CInjpNZU_nfRxXFZ3ccCDeg6ZdGU2S08yJpmF-fZm6EVkQSSHIqnfK17qdd1boJdAqfpYgEox9BR4P2oOPX3WrUAq3oNQ7Hm3opQOfWuIl92rUu7bVYGkq-7rbXzAUsPO1pAiSZ7UOyTfq93OSNZ1n8rhDnNw5FM6xsnmE9nYE2ZiK7mx84wnso7VZleDs6-7F97OBd881ovu5-frH1c3_ebbl9ur9aZ3QkLthaRUO_CayVHigIAOpkkxKVBMUg8UGQiJk9yqrZsGGL1WXiNVzrut0IJfdB-WuYecfh2be7MPxeE824jpWAwMCoTWXNH_o0JwrjQbVUPfPUHv0zHH9pFGMTaOXCpo1OVC7eyMJkSfaraunQn3waWIPrT3NRcc5DAy2QSwCFxOpWT05pDDvi3SADXn6MwSnWnRmXN05uz6_aMVW5ydfbbRhfJHyNQg9SjOZtjCldaKO8x_Wf7n8N9cOKZB</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Rodrigo, Javier Sanz</creator><creator>Anderson, Philip S.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20130901</creationdate><title>Investigation of the Stable Atmospheric Boundary Layer at Halley Antarctica</title><author>Rodrigo, Javier Sanz ; Anderson, Philip S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-45008c1f82595e6e1ec1dd7254e4d5860e2145ed5b7bcd619f87f8e07cfcb4843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Antarctica</topic><topic>Atmospheric boundary layer</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Atmospherics</topic><topic>Boundaries</topic><topic>Boundary layers</topic><topic>Case studies</topic><topic>Computational fluid dynamics</topic><topic>Convection, turbulence, diffusion. Boundary layer structure and dynamics</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Ice shelves</topic><topic>Icebergs</topic><topic>Investigations</topic><topic>Kinetic energy</topic><topic>Meteorology</topic><topic>Planetary boundary layer</topic><topic>Temperature</topic><topic>Temperature gradient</topic><topic>Temperature gradients</topic><topic>Turbulence</topic><topic>Wind shear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigo, Javier Sanz</creatorcontrib><creatorcontrib>Anderson, Philip S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Boundary-layer meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigo, Javier Sanz</au><au>Anderson, Philip S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of the Stable Atmospheric Boundary Layer at Halley Antarctica</atitle><jtitle>Boundary-layer meteorology</jtitle><stitle>Boundary-Layer Meteorol</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>148</volume><issue>3</issue><spage>517</spage><epage>539</epage><pages>517-539</pages><issn>0006-8314</issn><eissn>1573-1472</eissn><coden>BLMEBR</coden><abstract>Boundary-layer measurements from the Brunt Ice Shelf, Antarctica are analyzed to determine flux–profile relationships. Dimensionless quantities are derived in the standard approach from estimates of wind shear, potential temperature gradient, Richardson number, eddy diffusivities for momentum and heat, Prandtl number, mixing length and turbulent kinetic energy. Nieuwstadt local scaling theory for the stable atmospheric boundary-layer appears to work well departing only slightly from expressions found in mid-latitudes. An E – l m single-column model of the stable boundary layer is implemented based on local scaling arguments. Simulations based on the first GEWEX Atmospheric Boundary-Layer Study case study are validated against ensemble-averaged profiles for various stability classes. A stability-dependent function of the dimensionless turbulent kinetic energy allows a better fit to the ensemble profiles.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10546-013-9831-0</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-8314
ispartof Boundary-layer meteorology, 2013-09, Vol.148 (3), p.517-539
issn 0006-8314
1573-1472
language eng
recordid cdi_proquest_miscellaneous_1671488370
source SpringerLink Journals - AutoHoldings
subjects Analysis
Antarctica
Atmospheric boundary layer
Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Atmospherics
Boundaries
Boundary layers
Case studies
Computational fluid dynamics
Convection, turbulence, diffusion. Boundary layer structure and dynamics
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
Exact sciences and technology
External geophysics
Ice shelves
Icebergs
Investigations
Kinetic energy
Meteorology
Planetary boundary layer
Temperature
Temperature gradient
Temperature gradients
Turbulence
Wind shear
title Investigation of the Stable Atmospheric Boundary Layer at Halley Antarctica
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A07%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20the%20Stable%20Atmospheric%20Boundary%20Layer%20at%20Halley%20Antarctica&rft.jtitle=Boundary-layer%20meteorology&rft.au=Rodrigo,%20Javier%20Sanz&rft.date=2013-09-01&rft.volume=148&rft.issue=3&rft.spage=517&rft.epage=539&rft.pages=517-539&rft.issn=0006-8314&rft.eissn=1573-1472&rft.coden=BLMEBR&rft_id=info:doi/10.1007/s10546-013-9831-0&rft_dat=%3Cgale_proqu%3EA343156925%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1422993571&rft_id=info:pmid/&rft_galeid=A343156925&rfr_iscdi=true