Unsteady flows of a class of novel generalizations of the Navier–Stokes fluid

In this short paper we study the counterpart, within the context of a general class of fluids, of two famous unsteady flows originally studied by Stokes, within the context of Navier–Stokes fluid, namely Stokes’ first and second problems. The class of fluids considered, stress power-law fluids, are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2013-06, Vol.219 (19), p.9935-9946
Hauptverfasser: Atul Narayan, S.P., Rajagopal, K.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9946
container_issue 19
container_start_page 9935
container_title Applied mathematics and computation
container_volume 219
creator Atul Narayan, S.P.
Rajagopal, K.R.
description In this short paper we study the counterpart, within the context of a general class of fluids, of two famous unsteady flows originally studied by Stokes, within the context of Navier–Stokes fluid, namely Stokes’ first and second problems. The class of fluids considered, stress power-law fluids, are capable of stress thinning or stress thickening and can describe phenomena that the classical power-law fluids are incapable of modeling. Within the context of the problems considered, we are able to find solutions wherein stress boundary layers develop.
doi_str_mv 10.1016/j.amc.2013.03.049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671487245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300313003020</els_id><sourcerecordid>1671487245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-c073c0948ce32a8c0cb0be225cdf3b9ba7b040559f5ade098473bb8bfe7a2c0d3</originalsourceid><addsrcrecordid>eNp9UEtOwzAUtBBIlMIB2GXJJuU5duJYrFDFT6roArq2bOcFXNK42GlRWXEHbshJSFvWSCO9J81HmiHknMKIAi0u5yO9sKMMKBtBDy4PyICWgqV5weUhGQDIImUA7JicxDgHAFFQPiDTWRs71NUmqRv_ERNfJzqxjY67t_VrbJIXbDHoxn3qzvl2R3SvmDzqtcPw8_X91Pk3jH3AylWn5KjWTcSzvzsks9ub5_F9OpnePYyvJ6llDLrUgmAWJC8tskyXFqwBg1mW26pmRhotDHDIc1nnukKQJRfMmNLUKHRmoWJDcrHPXQb_vsLYqYWLFptGt-hXUdFCUF6KjOe9lO6lNvgYA9ZqGdxCh42ioLbjqbnqx1Pb8RT04LL3XO092HfY1lTROmwtVi6g7VTl3T_uX4OEeQc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671487245</pqid></control><display><type>article</type><title>Unsteady flows of a class of novel generalizations of the Navier–Stokes fluid</title><source>Elsevier ScienceDirect Journals</source><creator>Atul Narayan, S.P. ; Rajagopal, K.R.</creator><creatorcontrib>Atul Narayan, S.P. ; Rajagopal, K.R.</creatorcontrib><description>In this short paper we study the counterpart, within the context of a general class of fluids, of two famous unsteady flows originally studied by Stokes, within the context of Navier–Stokes fluid, namely Stokes’ first and second problems. The class of fluids considered, stress power-law fluids, are capable of stress thinning or stress thickening and can describe phenomena that the classical power-law fluids are incapable of modeling. Within the context of the problems considered, we are able to find solutions wherein stress boundary layers develop.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2013.03.049</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Boundary layer ; Computational fluid dynamics ; Fluid flow ; Fluids ; Generalized Newtonian fluids ; Mathematical models ; Stokes’ first problem ; Stokes’ second problem ; Stress power-law fluids ; Stresses ; Thickening ; Thinning ; Unsteady flow</subject><ispartof>Applied mathematics and computation, 2013-06, Vol.219 (19), p.9935-9946</ispartof><rights>2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-c073c0948ce32a8c0cb0be225cdf3b9ba7b040559f5ade098473bb8bfe7a2c0d3</citedby><cites>FETCH-LOGICAL-c330t-c073c0948ce32a8c0cb0be225cdf3b9ba7b040559f5ade098473bb8bfe7a2c0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300313003020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Atul Narayan, S.P.</creatorcontrib><creatorcontrib>Rajagopal, K.R.</creatorcontrib><title>Unsteady flows of a class of novel generalizations of the Navier–Stokes fluid</title><title>Applied mathematics and computation</title><description>In this short paper we study the counterpart, within the context of a general class of fluids, of two famous unsteady flows originally studied by Stokes, within the context of Navier–Stokes fluid, namely Stokes’ first and second problems. The class of fluids considered, stress power-law fluids, are capable of stress thinning or stress thickening and can describe phenomena that the classical power-law fluids are incapable of modeling. Within the context of the problems considered, we are able to find solutions wherein stress boundary layers develop.</description><subject>Boundary layer</subject><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Generalized Newtonian fluids</subject><subject>Mathematical models</subject><subject>Stokes’ first problem</subject><subject>Stokes’ second problem</subject><subject>Stress power-law fluids</subject><subject>Stresses</subject><subject>Thickening</subject><subject>Thinning</subject><subject>Unsteady flow</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9UEtOwzAUtBBIlMIB2GXJJuU5duJYrFDFT6roArq2bOcFXNK42GlRWXEHbshJSFvWSCO9J81HmiHknMKIAi0u5yO9sKMMKBtBDy4PyICWgqV5weUhGQDIImUA7JicxDgHAFFQPiDTWRs71NUmqRv_ERNfJzqxjY67t_VrbJIXbDHoxn3qzvl2R3SvmDzqtcPw8_X91Pk3jH3AylWn5KjWTcSzvzsks9ub5_F9OpnePYyvJ6llDLrUgmAWJC8tskyXFqwBg1mW26pmRhotDHDIc1nnukKQJRfMmNLUKHRmoWJDcrHPXQb_vsLYqYWLFptGt-hXUdFCUF6KjOe9lO6lNvgYA9ZqGdxCh42ioLbjqbnqx1Pb8RT04LL3XO092HfY1lTROmwtVi6g7VTl3T_uX4OEeQc</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Atul Narayan, S.P.</creator><creator>Rajagopal, K.R.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130601</creationdate><title>Unsteady flows of a class of novel generalizations of the Navier–Stokes fluid</title><author>Atul Narayan, S.P. ; Rajagopal, K.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-c073c0948ce32a8c0cb0be225cdf3b9ba7b040559f5ade098473bb8bfe7a2c0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Boundary layer</topic><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Generalized Newtonian fluids</topic><topic>Mathematical models</topic><topic>Stokes’ first problem</topic><topic>Stokes’ second problem</topic><topic>Stress power-law fluids</topic><topic>Stresses</topic><topic>Thickening</topic><topic>Thinning</topic><topic>Unsteady flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atul Narayan, S.P.</creatorcontrib><creatorcontrib>Rajagopal, K.R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atul Narayan, S.P.</au><au>Rajagopal, K.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsteady flows of a class of novel generalizations of the Navier–Stokes fluid</atitle><jtitle>Applied mathematics and computation</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>219</volume><issue>19</issue><spage>9935</spage><epage>9946</epage><pages>9935-9946</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>In this short paper we study the counterpart, within the context of a general class of fluids, of two famous unsteady flows originally studied by Stokes, within the context of Navier–Stokes fluid, namely Stokes’ first and second problems. The class of fluids considered, stress power-law fluids, are capable of stress thinning or stress thickening and can describe phenomena that the classical power-law fluids are incapable of modeling. Within the context of the problems considered, we are able to find solutions wherein stress boundary layers develop.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2013.03.049</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2013-06, Vol.219 (19), p.9935-9946
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_1671487245
source Elsevier ScienceDirect Journals
subjects Boundary layer
Computational fluid dynamics
Fluid flow
Fluids
Generalized Newtonian fluids
Mathematical models
Stokes’ first problem
Stokes’ second problem
Stress power-law fluids
Stresses
Thickening
Thinning
Unsteady flow
title Unsteady flows of a class of novel generalizations of the Navier–Stokes fluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A12%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsteady%20flows%20of%20a%20class%20of%20novel%20generalizations%20of%20the%20Navier%E2%80%93Stokes%20fluid&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Atul%20Narayan,%20S.P.&rft.date=2013-06-01&rft.volume=219&rft.issue=19&rft.spage=9935&rft.epage=9946&rft.pages=9935-9946&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2013.03.049&rft_dat=%3Cproquest_cross%3E1671487245%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671487245&rft_id=info:pmid/&rft_els_id=S0096300313003020&rfr_iscdi=true