Unsteady flows of a class of novel generalizations of the Navier–Stokes fluid
In this short paper we study the counterpart, within the context of a general class of fluids, of two famous unsteady flows originally studied by Stokes, within the context of Navier–Stokes fluid, namely Stokes’ first and second problems. The class of fluids considered, stress power-law fluids, are...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2013-06, Vol.219 (19), p.9935-9946 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9946 |
---|---|
container_issue | 19 |
container_start_page | 9935 |
container_title | Applied mathematics and computation |
container_volume | 219 |
creator | Atul Narayan, S.P. Rajagopal, K.R. |
description | In this short paper we study the counterpart, within the context of a general class of fluids, of two famous unsteady flows originally studied by Stokes, within the context of Navier–Stokes fluid, namely Stokes’ first and second problems. The class of fluids considered, stress power-law fluids, are capable of stress thinning or stress thickening and can describe phenomena that the classical power-law fluids are incapable of modeling. Within the context of the problems considered, we are able to find solutions wherein stress boundary layers develop. |
doi_str_mv | 10.1016/j.amc.2013.03.049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671487245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300313003020</els_id><sourcerecordid>1671487245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-c073c0948ce32a8c0cb0be225cdf3b9ba7b040559f5ade098473bb8bfe7a2c0d3</originalsourceid><addsrcrecordid>eNp9UEtOwzAUtBBIlMIB2GXJJuU5duJYrFDFT6roArq2bOcFXNK42GlRWXEHbshJSFvWSCO9J81HmiHknMKIAi0u5yO9sKMMKBtBDy4PyICWgqV5weUhGQDIImUA7JicxDgHAFFQPiDTWRs71NUmqRv_ERNfJzqxjY67t_VrbJIXbDHoxn3qzvl2R3SvmDzqtcPw8_X91Pk3jH3AylWn5KjWTcSzvzsks9ub5_F9OpnePYyvJ6llDLrUgmAWJC8tskyXFqwBg1mW26pmRhotDHDIc1nnukKQJRfMmNLUKHRmoWJDcrHPXQb_vsLYqYWLFptGt-hXUdFCUF6KjOe9lO6lNvgYA9ZqGdxCh42ioLbjqbnqx1Pb8RT04LL3XO092HfY1lTROmwtVi6g7VTl3T_uX4OEeQc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671487245</pqid></control><display><type>article</type><title>Unsteady flows of a class of novel generalizations of the Navier–Stokes fluid</title><source>Elsevier ScienceDirect Journals</source><creator>Atul Narayan, S.P. ; Rajagopal, K.R.</creator><creatorcontrib>Atul Narayan, S.P. ; Rajagopal, K.R.</creatorcontrib><description>In this short paper we study the counterpart, within the context of a general class of fluids, of two famous unsteady flows originally studied by Stokes, within the context of Navier–Stokes fluid, namely Stokes’ first and second problems. The class of fluids considered, stress power-law fluids, are capable of stress thinning or stress thickening and can describe phenomena that the classical power-law fluids are incapable of modeling. Within the context of the problems considered, we are able to find solutions wherein stress boundary layers develop.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2013.03.049</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Boundary layer ; Computational fluid dynamics ; Fluid flow ; Fluids ; Generalized Newtonian fluids ; Mathematical models ; Stokes’ first problem ; Stokes’ second problem ; Stress power-law fluids ; Stresses ; Thickening ; Thinning ; Unsteady flow</subject><ispartof>Applied mathematics and computation, 2013-06, Vol.219 (19), p.9935-9946</ispartof><rights>2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-c073c0948ce32a8c0cb0be225cdf3b9ba7b040559f5ade098473bb8bfe7a2c0d3</citedby><cites>FETCH-LOGICAL-c330t-c073c0948ce32a8c0cb0be225cdf3b9ba7b040559f5ade098473bb8bfe7a2c0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300313003020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Atul Narayan, S.P.</creatorcontrib><creatorcontrib>Rajagopal, K.R.</creatorcontrib><title>Unsteady flows of a class of novel generalizations of the Navier–Stokes fluid</title><title>Applied mathematics and computation</title><description>In this short paper we study the counterpart, within the context of a general class of fluids, of two famous unsteady flows originally studied by Stokes, within the context of Navier–Stokes fluid, namely Stokes’ first and second problems. The class of fluids considered, stress power-law fluids, are capable of stress thinning or stress thickening and can describe phenomena that the classical power-law fluids are incapable of modeling. Within the context of the problems considered, we are able to find solutions wherein stress boundary layers develop.</description><subject>Boundary layer</subject><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Generalized Newtonian fluids</subject><subject>Mathematical models</subject><subject>Stokes’ first problem</subject><subject>Stokes’ second problem</subject><subject>Stress power-law fluids</subject><subject>Stresses</subject><subject>Thickening</subject><subject>Thinning</subject><subject>Unsteady flow</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9UEtOwzAUtBBIlMIB2GXJJuU5duJYrFDFT6roArq2bOcFXNK42GlRWXEHbshJSFvWSCO9J81HmiHknMKIAi0u5yO9sKMMKBtBDy4PyICWgqV5weUhGQDIImUA7JicxDgHAFFQPiDTWRs71NUmqRv_ERNfJzqxjY67t_VrbJIXbDHoxn3qzvl2R3SvmDzqtcPw8_X91Pk3jH3AylWn5KjWTcSzvzsks9ub5_F9OpnePYyvJ6llDLrUgmAWJC8tskyXFqwBg1mW26pmRhotDHDIc1nnukKQJRfMmNLUKHRmoWJDcrHPXQb_vsLYqYWLFptGt-hXUdFCUF6KjOe9lO6lNvgYA9ZqGdxCh42ioLbjqbnqx1Pb8RT04LL3XO092HfY1lTROmwtVi6g7VTl3T_uX4OEeQc</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Atul Narayan, S.P.</creator><creator>Rajagopal, K.R.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130601</creationdate><title>Unsteady flows of a class of novel generalizations of the Navier–Stokes fluid</title><author>Atul Narayan, S.P. ; Rajagopal, K.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-c073c0948ce32a8c0cb0be225cdf3b9ba7b040559f5ade098473bb8bfe7a2c0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Boundary layer</topic><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Generalized Newtonian fluids</topic><topic>Mathematical models</topic><topic>Stokes’ first problem</topic><topic>Stokes’ second problem</topic><topic>Stress power-law fluids</topic><topic>Stresses</topic><topic>Thickening</topic><topic>Thinning</topic><topic>Unsteady flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atul Narayan, S.P.</creatorcontrib><creatorcontrib>Rajagopal, K.R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atul Narayan, S.P.</au><au>Rajagopal, K.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsteady flows of a class of novel generalizations of the Navier–Stokes fluid</atitle><jtitle>Applied mathematics and computation</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>219</volume><issue>19</issue><spage>9935</spage><epage>9946</epage><pages>9935-9946</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>In this short paper we study the counterpart, within the context of a general class of fluids, of two famous unsteady flows originally studied by Stokes, within the context of Navier–Stokes fluid, namely Stokes’ first and second problems. The class of fluids considered, stress power-law fluids, are capable of stress thinning or stress thickening and can describe phenomena that the classical power-law fluids are incapable of modeling. Within the context of the problems considered, we are able to find solutions wherein stress boundary layers develop.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2013.03.049</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2013-06, Vol.219 (19), p.9935-9946 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671487245 |
source | Elsevier ScienceDirect Journals |
subjects | Boundary layer Computational fluid dynamics Fluid flow Fluids Generalized Newtonian fluids Mathematical models Stokes’ first problem Stokes’ second problem Stress power-law fluids Stresses Thickening Thinning Unsteady flow |
title | Unsteady flows of a class of novel generalizations of the Navier–Stokes fluid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A12%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsteady%20flows%20of%20a%20class%20of%20novel%20generalizations%20of%20the%20Navier%E2%80%93Stokes%20fluid&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Atul%20Narayan,%20S.P.&rft.date=2013-06-01&rft.volume=219&rft.issue=19&rft.spage=9935&rft.epage=9946&rft.pages=9935-9946&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2013.03.049&rft_dat=%3Cproquest_cross%3E1671487245%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671487245&rft_id=info:pmid/&rft_els_id=S0096300313003020&rfr_iscdi=true |