Fused Thiophene Semiconductors: Crystal Structure-Film Microstructure Transistor Performance Correlations
The molecular packing motifs within crystalline domains should be a key determinant of charge transport in thin‐film transistors (TFTs) based on small organic molecules. Despite this implied importance, detailed information about molecular organization in polycrystalline thin films is not available...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2013-08, Vol.23 (31), p.3850-3865 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3865 |
---|---|
container_issue | 31 |
container_start_page | 3850 |
container_title | Advanced functional materials |
container_volume | 23 |
creator | Youn, Jangdae Kewalramani, Sumit Emery, Jonathan D. Shi, Yanrong Zhang, Shiming Chang, Hsiu-Chieh Liang, You-jhih Yeh, Chia-Ming Feng, Chieh-Yuan Huang, Hui Stern, Charlotte Chen, Liang-Hsiang Ho, Jia-Chong Chen, Ming-Chou Bedzyk, Michael J. Facchetti, Antonio Marks, Tobin J. |
description | The molecular packing motifs within crystalline domains should be a key determinant of charge transport in thin‐film transistors (TFTs) based on small organic molecules. Despite this implied importance, detailed information about molecular organization in polycrystalline thin films is not available for the vast majority of molecular organic semiconductors. Considering the potential of fused thiophenes as environmentally stable, high‐performance semiconductors, it is therefore of interest to investigate their thin film microstructures in relation to the single crystal molecular packing and OTFT performance. Here, the molecular packing motifs of several new benzo[d,d′]thieno[3,2‐b;4,5‐b′]dithiophene (BTDT) derivatives are studied both in bulk 3D crystals and as thin films by single crystal diffraction and grazing incidence wide angle X‐ray scattering (GIWAXS), respectively. The results show that the BTDT derivative thin films can have significantly different molecular packing from their bulk crystals. For phenylbenzo[d,d′]thieno[3,2‐b;4,5‐b′]dithiophene (P‐BTDT), 2‐biphenylbenzo[d,d′]thieno‐[3,2‐b;4,5‐b′]dithiophene (Bp‐BTDT), 2‐naphthalenylbenzo[d,d′]thieno[3,2‐b;4,5‐b′]dithiophene (Np‐BTDT), and bisbenzo[d,d′]thieno[3,2‐b;4,5‐b′]dithiophene (BBTDT), two lattices co‐exist, and are significantly strained versus their single crystal forms. For P‐BTDT, the dominance of the more strained lattice relative to the bulk‐like lattice likely explains the high carrier mobility. In contrast, poor crystallinity and surface coverage at the dielectric/substrate interface explains the marginal OTFT performance of seemingly similar PF‐BTDT films.
The thin film molecular packing motifs of several new benzo[d,d]thieno[3,2‐b;4,5‐b]dithiophene (BTDT) derivatives have different molecular packings from their bulk crystals. Co‐existence of strained lattices with their single crystal forms is speculated to have a significant effect on organic thin‐film transistor (OTFT) performance. |
doi_str_mv | 10.1002/adfm.201203439 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671486578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671486578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4269-3e14c6d835c346ef0d541c05e584aabae4bc59b15ca0bc6342b5aa6bb93788ba3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhiMEEqWwMmdkSbHjjyRsqJCC1PLVAt0sx7mohiQudiLovydVoGJjutOr9znpHs87xWiEEQrPZV5UoxDhEBFKkj1vgDnmAUFhvL_b8fLQO3LuDSEcRYQOPJ22DnJ_sdJmvYIa_DlUWpk6b1VjrLvwx3bjGln688Z2UWshSHVZ-TOtrHG_mb-wsnbadYj_ALYwtpK1An9srIVSNtrU7tg7KGTp4ORnDr3n9Hoxvgmm95Pb8eU0UDTkSUAAU8XzmDBFKIcC5YxihRiwmEqZSaCZYkmGmZIoU5zQMGNS8ixLSBTHmSRD76y_u7bmowXXiEo7BWUpazCtE5hHmMacRXFXHfXV7S_OQiHWVlfSbgRGYutUbJ2KndMOSHrgU5ew-actLq_S2V826NlOE3ztWGnfBY9IxMTr3UQ8JRwvX5JUPJJvJmWNXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671486578</pqid></control><display><type>article</type><title>Fused Thiophene Semiconductors: Crystal Structure-Film Microstructure Transistor Performance Correlations</title><source>Wiley Online Library Journals</source><creator>Youn, Jangdae ; Kewalramani, Sumit ; Emery, Jonathan D. ; Shi, Yanrong ; Zhang, Shiming ; Chang, Hsiu-Chieh ; Liang, You-jhih ; Yeh, Chia-Ming ; Feng, Chieh-Yuan ; Huang, Hui ; Stern, Charlotte ; Chen, Liang-Hsiang ; Ho, Jia-Chong ; Chen, Ming-Chou ; Bedzyk, Michael J. ; Facchetti, Antonio ; Marks, Tobin J.</creator><creatorcontrib>Youn, Jangdae ; Kewalramani, Sumit ; Emery, Jonathan D. ; Shi, Yanrong ; Zhang, Shiming ; Chang, Hsiu-Chieh ; Liang, You-jhih ; Yeh, Chia-Ming ; Feng, Chieh-Yuan ; Huang, Hui ; Stern, Charlotte ; Chen, Liang-Hsiang ; Ho, Jia-Chong ; Chen, Ming-Chou ; Bedzyk, Michael J. ; Facchetti, Antonio ; Marks, Tobin J.</creatorcontrib><description>The molecular packing motifs within crystalline domains should be a key determinant of charge transport in thin‐film transistors (TFTs) based on small organic molecules. Despite this implied importance, detailed information about molecular organization in polycrystalline thin films is not available for the vast majority of molecular organic semiconductors. Considering the potential of fused thiophenes as environmentally stable, high‐performance semiconductors, it is therefore of interest to investigate their thin film microstructures in relation to the single crystal molecular packing and OTFT performance. Here, the molecular packing motifs of several new benzo[d,d′]thieno[3,2‐b;4,5‐b′]dithiophene (BTDT) derivatives are studied both in bulk 3D crystals and as thin films by single crystal diffraction and grazing incidence wide angle X‐ray scattering (GIWAXS), respectively. The results show that the BTDT derivative thin films can have significantly different molecular packing from their bulk crystals. For phenylbenzo[d,d′]thieno[3,2‐b;4,5‐b′]dithiophene (P‐BTDT), 2‐biphenylbenzo[d,d′]thieno‐[3,2‐b;4,5‐b′]dithiophene (Bp‐BTDT), 2‐naphthalenylbenzo[d,d′]thieno[3,2‐b;4,5‐b′]dithiophene (Np‐BTDT), and bisbenzo[d,d′]thieno[3,2‐b;4,5‐b′]dithiophene (BBTDT), two lattices co‐exist, and are significantly strained versus their single crystal forms. For P‐BTDT, the dominance of the more strained lattice relative to the bulk‐like lattice likely explains the high carrier mobility. In contrast, poor crystallinity and surface coverage at the dielectric/substrate interface explains the marginal OTFT performance of seemingly similar PF‐BTDT films.
The thin film molecular packing motifs of several new benzo[d,d]thieno[3,2‐b;4,5‐b]dithiophene (BTDT) derivatives have different molecular packings from their bulk crystals. Co‐existence of strained lattices with their single crystal forms is speculated to have a significant effect on organic thin‐film transistor (OTFT) performance.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201203439</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>benzothienodithiophene (BTDT) ; crystal structure ; Crystals ; Derivatives ; grazing-incidence wide-angle X-ray scattering (GIWAXS) ; Lattices ; organic thin-film transistors (OTFT) ; Semiconductor devices ; Semiconductors ; Single crystals ; Thin films ; Transistors</subject><ispartof>Advanced functional materials, 2013-08, Vol.23 (31), p.3850-3865</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4269-3e14c6d835c346ef0d541c05e584aabae4bc59b15ca0bc6342b5aa6bb93788ba3</citedby><cites>FETCH-LOGICAL-c4269-3e14c6d835c346ef0d541c05e584aabae4bc59b15ca0bc6342b5aa6bb93788ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201203439$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201203439$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Youn, Jangdae</creatorcontrib><creatorcontrib>Kewalramani, Sumit</creatorcontrib><creatorcontrib>Emery, Jonathan D.</creatorcontrib><creatorcontrib>Shi, Yanrong</creatorcontrib><creatorcontrib>Zhang, Shiming</creatorcontrib><creatorcontrib>Chang, Hsiu-Chieh</creatorcontrib><creatorcontrib>Liang, You-jhih</creatorcontrib><creatorcontrib>Yeh, Chia-Ming</creatorcontrib><creatorcontrib>Feng, Chieh-Yuan</creatorcontrib><creatorcontrib>Huang, Hui</creatorcontrib><creatorcontrib>Stern, Charlotte</creatorcontrib><creatorcontrib>Chen, Liang-Hsiang</creatorcontrib><creatorcontrib>Ho, Jia-Chong</creatorcontrib><creatorcontrib>Chen, Ming-Chou</creatorcontrib><creatorcontrib>Bedzyk, Michael J.</creatorcontrib><creatorcontrib>Facchetti, Antonio</creatorcontrib><creatorcontrib>Marks, Tobin J.</creatorcontrib><title>Fused Thiophene Semiconductors: Crystal Structure-Film Microstructure Transistor Performance Correlations</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>The molecular packing motifs within crystalline domains should be a key determinant of charge transport in thin‐film transistors (TFTs) based on small organic molecules. Despite this implied importance, detailed information about molecular organization in polycrystalline thin films is not available for the vast majority of molecular organic semiconductors. Considering the potential of fused thiophenes as environmentally stable, high‐performance semiconductors, it is therefore of interest to investigate their thin film microstructures in relation to the single crystal molecular packing and OTFT performance. Here, the molecular packing motifs of several new benzo[d,d′]thieno[3,2‐b;4,5‐b′]dithiophene (BTDT) derivatives are studied both in bulk 3D crystals and as thin films by single crystal diffraction and grazing incidence wide angle X‐ray scattering (GIWAXS), respectively. The results show that the BTDT derivative thin films can have significantly different molecular packing from their bulk crystals. For phenylbenzo[d,d′]thieno[3,2‐b;4,5‐b′]dithiophene (P‐BTDT), 2‐biphenylbenzo[d,d′]thieno‐[3,2‐b;4,5‐b′]dithiophene (Bp‐BTDT), 2‐naphthalenylbenzo[d,d′]thieno[3,2‐b;4,5‐b′]dithiophene (Np‐BTDT), and bisbenzo[d,d′]thieno[3,2‐b;4,5‐b′]dithiophene (BBTDT), two lattices co‐exist, and are significantly strained versus their single crystal forms. For P‐BTDT, the dominance of the more strained lattice relative to the bulk‐like lattice likely explains the high carrier mobility. In contrast, poor crystallinity and surface coverage at the dielectric/substrate interface explains the marginal OTFT performance of seemingly similar PF‐BTDT films.
The thin film molecular packing motifs of several new benzo[d,d]thieno[3,2‐b;4,5‐b]dithiophene (BTDT) derivatives have different molecular packings from their bulk crystals. Co‐existence of strained lattices with their single crystal forms is speculated to have a significant effect on organic thin‐film transistor (OTFT) performance.</description><subject>benzothienodithiophene (BTDT)</subject><subject>crystal structure</subject><subject>Crystals</subject><subject>Derivatives</subject><subject>grazing-incidence wide-angle X-ray scattering (GIWAXS)</subject><subject>Lattices</subject><subject>organic thin-film transistors (OTFT)</subject><subject>Semiconductor devices</subject><subject>Semiconductors</subject><subject>Single crystals</subject><subject>Thin films</subject><subject>Transistors</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhiMEEqWwMmdkSbHjjyRsqJCC1PLVAt0sx7mohiQudiLovydVoGJjutOr9znpHs87xWiEEQrPZV5UoxDhEBFKkj1vgDnmAUFhvL_b8fLQO3LuDSEcRYQOPJ22DnJ_sdJmvYIa_DlUWpk6b1VjrLvwx3bjGln688Z2UWshSHVZ-TOtrHG_mb-wsnbadYj_ALYwtpK1An9srIVSNtrU7tg7KGTp4ORnDr3n9Hoxvgmm95Pb8eU0UDTkSUAAU8XzmDBFKIcC5YxihRiwmEqZSaCZYkmGmZIoU5zQMGNS8ixLSBTHmSRD76y_u7bmowXXiEo7BWUpazCtE5hHmMacRXFXHfXV7S_OQiHWVlfSbgRGYutUbJ2KndMOSHrgU5ew-actLq_S2V826NlOE3ztWGnfBY9IxMTr3UQ8JRwvX5JUPJJvJmWNXQ</recordid><startdate>20130819</startdate><enddate>20130819</enddate><creator>Youn, Jangdae</creator><creator>Kewalramani, Sumit</creator><creator>Emery, Jonathan D.</creator><creator>Shi, Yanrong</creator><creator>Zhang, Shiming</creator><creator>Chang, Hsiu-Chieh</creator><creator>Liang, You-jhih</creator><creator>Yeh, Chia-Ming</creator><creator>Feng, Chieh-Yuan</creator><creator>Huang, Hui</creator><creator>Stern, Charlotte</creator><creator>Chen, Liang-Hsiang</creator><creator>Ho, Jia-Chong</creator><creator>Chen, Ming-Chou</creator><creator>Bedzyk, Michael J.</creator><creator>Facchetti, Antonio</creator><creator>Marks, Tobin J.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130819</creationdate><title>Fused Thiophene Semiconductors: Crystal Structure-Film Microstructure Transistor Performance Correlations</title><author>Youn, Jangdae ; Kewalramani, Sumit ; Emery, Jonathan D. ; Shi, Yanrong ; Zhang, Shiming ; Chang, Hsiu-Chieh ; Liang, You-jhih ; Yeh, Chia-Ming ; Feng, Chieh-Yuan ; Huang, Hui ; Stern, Charlotte ; Chen, Liang-Hsiang ; Ho, Jia-Chong ; Chen, Ming-Chou ; Bedzyk, Michael J. ; Facchetti, Antonio ; Marks, Tobin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4269-3e14c6d835c346ef0d541c05e584aabae4bc59b15ca0bc6342b5aa6bb93788ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>benzothienodithiophene (BTDT)</topic><topic>crystal structure</topic><topic>Crystals</topic><topic>Derivatives</topic><topic>grazing-incidence wide-angle X-ray scattering (GIWAXS)</topic><topic>Lattices</topic><topic>organic thin-film transistors (OTFT)</topic><topic>Semiconductor devices</topic><topic>Semiconductors</topic><topic>Single crystals</topic><topic>Thin films</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Youn, Jangdae</creatorcontrib><creatorcontrib>Kewalramani, Sumit</creatorcontrib><creatorcontrib>Emery, Jonathan D.</creatorcontrib><creatorcontrib>Shi, Yanrong</creatorcontrib><creatorcontrib>Zhang, Shiming</creatorcontrib><creatorcontrib>Chang, Hsiu-Chieh</creatorcontrib><creatorcontrib>Liang, You-jhih</creatorcontrib><creatorcontrib>Yeh, Chia-Ming</creatorcontrib><creatorcontrib>Feng, Chieh-Yuan</creatorcontrib><creatorcontrib>Huang, Hui</creatorcontrib><creatorcontrib>Stern, Charlotte</creatorcontrib><creatorcontrib>Chen, Liang-Hsiang</creatorcontrib><creatorcontrib>Ho, Jia-Chong</creatorcontrib><creatorcontrib>Chen, Ming-Chou</creatorcontrib><creatorcontrib>Bedzyk, Michael J.</creatorcontrib><creatorcontrib>Facchetti, Antonio</creatorcontrib><creatorcontrib>Marks, Tobin J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Youn, Jangdae</au><au>Kewalramani, Sumit</au><au>Emery, Jonathan D.</au><au>Shi, Yanrong</au><au>Zhang, Shiming</au><au>Chang, Hsiu-Chieh</au><au>Liang, You-jhih</au><au>Yeh, Chia-Ming</au><au>Feng, Chieh-Yuan</au><au>Huang, Hui</au><au>Stern, Charlotte</au><au>Chen, Liang-Hsiang</au><au>Ho, Jia-Chong</au><au>Chen, Ming-Chou</au><au>Bedzyk, Michael J.</au><au>Facchetti, Antonio</au><au>Marks, Tobin J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fused Thiophene Semiconductors: Crystal Structure-Film Microstructure Transistor Performance Correlations</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2013-08-19</date><risdate>2013</risdate><volume>23</volume><issue>31</issue><spage>3850</spage><epage>3865</epage><pages>3850-3865</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The molecular packing motifs within crystalline domains should be a key determinant of charge transport in thin‐film transistors (TFTs) based on small organic molecules. Despite this implied importance, detailed information about molecular organization in polycrystalline thin films is not available for the vast majority of molecular organic semiconductors. Considering the potential of fused thiophenes as environmentally stable, high‐performance semiconductors, it is therefore of interest to investigate their thin film microstructures in relation to the single crystal molecular packing and OTFT performance. Here, the molecular packing motifs of several new benzo[d,d′]thieno[3,2‐b;4,5‐b′]dithiophene (BTDT) derivatives are studied both in bulk 3D crystals and as thin films by single crystal diffraction and grazing incidence wide angle X‐ray scattering (GIWAXS), respectively. The results show that the BTDT derivative thin films can have significantly different molecular packing from their bulk crystals. For phenylbenzo[d,d′]thieno[3,2‐b;4,5‐b′]dithiophene (P‐BTDT), 2‐biphenylbenzo[d,d′]thieno‐[3,2‐b;4,5‐b′]dithiophene (Bp‐BTDT), 2‐naphthalenylbenzo[d,d′]thieno[3,2‐b;4,5‐b′]dithiophene (Np‐BTDT), and bisbenzo[d,d′]thieno[3,2‐b;4,5‐b′]dithiophene (BBTDT), two lattices co‐exist, and are significantly strained versus their single crystal forms. For P‐BTDT, the dominance of the more strained lattice relative to the bulk‐like lattice likely explains the high carrier mobility. In contrast, poor crystallinity and surface coverage at the dielectric/substrate interface explains the marginal OTFT performance of seemingly similar PF‐BTDT films.
The thin film molecular packing motifs of several new benzo[d,d]thieno[3,2‐b;4,5‐b]dithiophene (BTDT) derivatives have different molecular packings from their bulk crystals. Co‐existence of strained lattices with their single crystal forms is speculated to have a significant effect on organic thin‐film transistor (OTFT) performance.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.201203439</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2013-08, Vol.23 (31), p.3850-3865 |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671486578 |
source | Wiley Online Library Journals |
subjects | benzothienodithiophene (BTDT) crystal structure Crystals Derivatives grazing-incidence wide-angle X-ray scattering (GIWAXS) Lattices organic thin-film transistors (OTFT) Semiconductor devices Semiconductors Single crystals Thin films Transistors |
title | Fused Thiophene Semiconductors: Crystal Structure-Film Microstructure Transistor Performance Correlations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T14%3A15%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fused%20Thiophene%20Semiconductors:%20Crystal%20Structure-Film%20Microstructure%20Transistor%20Performance%20Correlations&rft.jtitle=Advanced%20functional%20materials&rft.au=Youn,%20Jangdae&rft.date=2013-08-19&rft.volume=23&rft.issue=31&rft.spage=3850&rft.epage=3865&rft.pages=3850-3865&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201203439&rft_dat=%3Cproquest_cross%3E1671486578%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671486578&rft_id=info:pmid/&rfr_iscdi=true |