Lipschitz equivalence of fractal sets in R
Let T(q, D) be a self-similar (fractal) set generated by {fi(x) = 1/q((x + di)}^Ni=1 where integer q 〉 1and D = {d1, d2 dN} C R. To show the Lipschitz equivalence of T(q, D) and a dust-iik-e T(q, C), one general restriction is 79 C Q by Peres et al. [Israel] Math, 2000, 117: 353-379]. In this paper,...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2012-10, Vol.55 (10), p.2095-2107 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2107 |
---|---|
container_issue | 10 |
container_start_page | 2095 |
container_title | Science China. Mathematics |
container_volume | 55 |
creator | Deng, GuoTai He, XingGang |
description | Let T(q, D) be a self-similar (fractal) set generated by {fi(x) = 1/q((x + di)}^Ni=1 where integer q 〉 1and D = {d1, d2 dN} C R. To show the Lipschitz equivalence of T(q, D) and a dust-iik-e T(q, C), one general restriction is 79 C Q by Peres et al. [Israel] Math, 2000, 117: 353-379]. In this paper, we obtain several sufficient criterions for the Lipschitz equivalence of two self-similar sets by using dust-like graph-directed iterating function systems and combinatorial techniques. Several examples are given to illustrate our theory. |
doi_str_mv | 10.1007/s11425-012-4444-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671483679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>43451101</cqvip_id><sourcerecordid>1671483679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3285-d75f8a587c4a72030b6332b611ea4245d650e0154e702bb958103c15ca065c683</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhdRsNT-AG_xJsLqzH7nKMUvKAii52Wz3bQpadJmE0F_vVsiHqVzmJnD-87HQ8glwi0C6LuIKJikgIyKFFSekAkaldOU2GnqlRZUM8PPySzGDaTgOQjNJ-RmUe2iX1f9dxb2Q_Xp6tD4kLVlVnbO967OYuhjVjXZ2wU5K10dw-y3TsnH48P7_JkuXp9e5vcL6jkzki61LI2TRnvhNAMOheKcFQoxOMGEXCoJAVCKoIEVRS4NAvcovQMlvTJ8Sq7Hubuu3Q8h9nZbRR_q2jWhHaJN3-hcGw7qGCkKw5XOj5AyAGUMPxyAo9R3bYxdKO2uq7au-7II9gDcjsBtAm4PwK1MHjZ6YtI2q9DZTTt0TeL0r-nqd9G6bVb75PvbJLiQiID8B0EJiZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1620068838</pqid></control><display><type>article</type><title>Lipschitz equivalence of fractal sets in R</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Deng, GuoTai ; He, XingGang</creator><creatorcontrib>Deng, GuoTai ; He, XingGang</creatorcontrib><description>Let T(q, D) be a self-similar (fractal) set generated by {fi(x) = 1/q((x + di)}^Ni=1 where integer q 〉 1and D = {d1, d2 dN} C R. To show the Lipschitz equivalence of T(q, D) and a dust-iik-e T(q, C), one general restriction is 79 C Q by Peres et al. [Israel] Math, 2000, 117: 353-379]. In this paper, we obtain several sufficient criterions for the Lipschitz equivalence of two self-similar sets by using dust-like graph-directed iterating function systems and combinatorial techniques. Several examples are given to illustrate our theory.</description><identifier>ISSN: 1674-7283</identifier><identifier>ISSN: 1006-9283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-012-4444-5</identifier><language>eng</language><publisher>Heidelberg: SP Science China Press</publisher><subject>Applications of Mathematics ; Astronomy ; China ; Combinatorial analysis ; Constrictions ; Criteria ; Equivalence ; Fractal analysis ; Fractals ; Functions (mathematics) ; Lipschitz ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Self-similarity ; 以色列 ; 分形集 ; 技术使用 ; 等价 ; 自相似集 ; 迭代函数系统</subject><ispartof>Science China. Mathematics, 2012-10, Vol.55 (10), p.2095-2107</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3285-d75f8a587c4a72030b6332b611ea4245d650e0154e702bb958103c15ca065c683</citedby><cites>FETCH-LOGICAL-c3285-d75f8a587c4a72030b6332b611ea4245d650e0154e702bb958103c15ca065c683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60114X/60114X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-012-4444-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-012-4444-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Deng, GuoTai</creatorcontrib><creatorcontrib>He, XingGang</creatorcontrib><title>Lipschitz equivalence of fractal sets in R</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><addtitle>SCIENCE CHINA Mathematics</addtitle><description>Let T(q, D) be a self-similar (fractal) set generated by {fi(x) = 1/q((x + di)}^Ni=1 where integer q 〉 1and D = {d1, d2 dN} C R. To show the Lipschitz equivalence of T(q, D) and a dust-iik-e T(q, C), one general restriction is 79 C Q by Peres et al. [Israel] Math, 2000, 117: 353-379]. In this paper, we obtain several sufficient criterions for the Lipschitz equivalence of two self-similar sets by using dust-like graph-directed iterating function systems and combinatorial techniques. Several examples are given to illustrate our theory.</description><subject>Applications of Mathematics</subject><subject>Astronomy</subject><subject>China</subject><subject>Combinatorial analysis</subject><subject>Constrictions</subject><subject>Criteria</subject><subject>Equivalence</subject><subject>Fractal analysis</subject><subject>Fractals</subject><subject>Functions (mathematics)</subject><subject>Lipschitz</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Self-similarity</subject><subject>以色列</subject><subject>分形集</subject><subject>技术使用</subject><subject>等价</subject><subject>自相似集</subject><subject>迭代函数系统</subject><issn>1674-7283</issn><issn>1006-9283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkE1Lw0AQhhdRsNT-AG_xJsLqzH7nKMUvKAii52Wz3bQpadJmE0F_vVsiHqVzmJnD-87HQ8glwi0C6LuIKJikgIyKFFSekAkaldOU2GnqlRZUM8PPySzGDaTgOQjNJ-RmUe2iX1f9dxb2Q_Xp6tD4kLVlVnbO967OYuhjVjXZ2wU5K10dw-y3TsnH48P7_JkuXp9e5vcL6jkzki61LI2TRnvhNAMOheKcFQoxOMGEXCoJAVCKoIEVRS4NAvcovQMlvTJ8Sq7Hubuu3Q8h9nZbRR_q2jWhHaJN3-hcGw7qGCkKw5XOj5AyAGUMPxyAo9R3bYxdKO2uq7au-7II9gDcjsBtAm4PwK1MHjZ6YtI2q9DZTTt0TeL0r-nqd9G6bVb75PvbJLiQiID8B0EJiZU</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Deng, GuoTai</creator><creator>He, XingGang</creator><general>SP Science China Press</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20121001</creationdate><title>Lipschitz equivalence of fractal sets in R</title><author>Deng, GuoTai ; He, XingGang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3285-d75f8a587c4a72030b6332b611ea4245d650e0154e702bb958103c15ca065c683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applications of Mathematics</topic><topic>Astronomy</topic><topic>China</topic><topic>Combinatorial analysis</topic><topic>Constrictions</topic><topic>Criteria</topic><topic>Equivalence</topic><topic>Fractal analysis</topic><topic>Fractals</topic><topic>Functions (mathematics)</topic><topic>Lipschitz</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Self-similarity</topic><topic>以色列</topic><topic>分形集</topic><topic>技术使用</topic><topic>等价</topic><topic>自相似集</topic><topic>迭代函数系统</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, GuoTai</creatorcontrib><creatorcontrib>He, XingGang</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, GuoTai</au><au>He, XingGang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipschitz equivalence of fractal sets in R</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><addtitle>SCIENCE CHINA Mathematics</addtitle><date>2012-10-01</date><risdate>2012</risdate><volume>55</volume><issue>10</issue><spage>2095</spage><epage>2107</epage><pages>2095-2107</pages><issn>1674-7283</issn><issn>1006-9283</issn><eissn>1869-1862</eissn><abstract>Let T(q, D) be a self-similar (fractal) set generated by {fi(x) = 1/q((x + di)}^Ni=1 where integer q 〉 1and D = {d1, d2 dN} C R. To show the Lipschitz equivalence of T(q, D) and a dust-iik-e T(q, C), one general restriction is 79 C Q by Peres et al. [Israel] Math, 2000, 117: 353-379]. In this paper, we obtain several sufficient criterions for the Lipschitz equivalence of two self-similar sets by using dust-like graph-directed iterating function systems and combinatorial techniques. Several examples are given to illustrate our theory.</abstract><cop>Heidelberg</cop><pub>SP Science China Press</pub><doi>10.1007/s11425-012-4444-5</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7283 |
ispartof | Science China. Mathematics, 2012-10, Vol.55 (10), p.2095-2107 |
issn | 1674-7283 1006-9283 1869-1862 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671483679 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Astronomy China Combinatorial analysis Constrictions Criteria Equivalence Fractal analysis Fractals Functions (mathematics) Lipschitz Mathematical analysis Mathematics Mathematics and Statistics Self-similarity 以色列 分形集 技术使用 等价 自相似集 迭代函数系统 |
title | Lipschitz equivalence of fractal sets in R |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A18%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipschitz%20equivalence%20of%20fractal%20sets%20in%20R&rft.jtitle=Science%20China.%20Mathematics&rft.au=Deng,%20GuoTai&rft.date=2012-10-01&rft.volume=55&rft.issue=10&rft.spage=2095&rft.epage=2107&rft.pages=2095-2107&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-012-4444-5&rft_dat=%3Cproquest_cross%3E1671483679%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1620068838&rft_id=info:pmid/&rft_cqvip_id=43451101&rfr_iscdi=true |