Effects of heat-treatment temperature on properties of Cobalt–Manganese–Boride as efficient catalyst toward hydrolysis of alkaline sodium borohydride solution
Ternary catalyst Cobalt–Manganese–Boride (Co–Mn–B) has been synthesized with chemical co-precipitation followed by calcination at various temperatures. The effects of heat-treatment temperature on the catalytic activity toward hydrolysis of alkaline NaBH 4 solution have been comparatively investigat...
Gespeichert in:
Veröffentlicht in: | International journal of hydrogen energy 2012, Vol.37 (1), p.995-1001 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1001 |
---|---|
container_issue | 1 |
container_start_page | 995 |
container_title | International journal of hydrogen energy |
container_volume | 37 |
creator | Yuan, Xianxia Jia, Chao Ding, Xin-Long Ma, Zi-Feng |
description | Ternary catalyst Cobalt–Manganese–Boride (Co–Mn–B) has been synthesized with chemical co-precipitation followed by calcination at various temperatures. The effects of heat-treatment temperature on the catalytic activity toward hydrolysis of alkaline NaBH
4 solution have been comparatively investigated and analyzed using various techniques including X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), Scanning Electron Microscope (SEM) and BET surface area. The effects of NaOH and NaBH
4 concentration as well as reaction temperature on hydrogen generation rate from alkaline NaBH
4 solution catalyzed by the optimal Co–Mn–B catalyst have been studied. The results, along with the calculated activation energy, have been analyzed and discussed. It is revealed that the Co–Mn–B catalyst heat-treated at 250 °C has the highest catalytic activity with an activation energy of 52.1 kJ mol
−1, the hydrogen generation rate catalyzed by it is 45% higher than that by Co–B catalyst. |
doi_str_mv | 10.1016/j.ijhydene.2011.03.064 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671482371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319911006549</els_id><sourcerecordid>1671482371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-e71673cfa1c0af8bf2e3a22ea1bb21aa4cb51f1657c24317716b766b8e03f8223</originalsourceid><addsrcrecordid>eNqFkU1uFDEQhVuISAyBKyBvkNh047J7-mcHjMKPFJQNrK1qd5l4cLcH2x00O-6QG3C0nAR3JrBlY7usr175-RXFC-AVcGhe7yu7vz6ONFMlOEDFZcWb-lGxga7tS1l37eNiw2XDSwl9_6R4GuOec2h53W-K3xfGkE6RecOuCVOZQl4nmhNLNB0oYFoCMT-zQ_C5TJbu2Z0f0KW7X7efcf6GM0XK53c-2JEYRkbGWG1XFY0J3TFmOf8Tw8jyS4PPF_ZeBt13dHYmFv1ol4kNPviVWGWid0uyfn5WnBl0kZ4_7OfF1_cXX3Yfy8urD592by9LXdeQSmqhaaU2CJqj6QYjSKIQhDAMAhBrPWzBQLNttagltBkf2qYZOuLSdELI8-LVSTc7_bFQTGqyUZNz2Z5fosryUHdCtpDR5oTq4GMMZNQh2AnDUQFXayhqr_6GotZQFJcqh5IbXz7MwKjRmYCztvFft9jWIIH3mXtz4igbvrEUVFy_U9NoQ45Ljd7-b9QfreWs-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671482371</pqid></control><display><type>article</type><title>Effects of heat-treatment temperature on properties of Cobalt–Manganese–Boride as efficient catalyst toward hydrolysis of alkaline sodium borohydride solution</title><source>Elsevier ScienceDirect Journals</source><creator>Yuan, Xianxia ; Jia, Chao ; Ding, Xin-Long ; Ma, Zi-Feng</creator><creatorcontrib>Yuan, Xianxia ; Jia, Chao ; Ding, Xin-Long ; Ma, Zi-Feng</creatorcontrib><description>Ternary catalyst Cobalt–Manganese–Boride (Co–Mn–B) has been synthesized with chemical co-precipitation followed by calcination at various temperatures. The effects of heat-treatment temperature on the catalytic activity toward hydrolysis of alkaline NaBH
4 solution have been comparatively investigated and analyzed using various techniques including X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), Scanning Electron Microscope (SEM) and BET surface area. The effects of NaOH and NaBH
4 concentration as well as reaction temperature on hydrogen generation rate from alkaline NaBH
4 solution catalyzed by the optimal Co–Mn–B catalyst have been studied. The results, along with the calculated activation energy, have been analyzed and discussed. It is revealed that the Co–Mn–B catalyst heat-treated at 250 °C has the highest catalytic activity with an activation energy of 52.1 kJ mol
−1, the hydrogen generation rate catalyzed by it is 45% higher than that by Co–B catalyst.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2011.03.064</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Activation energy ; Alkaline sodium borohydride solution ; Alternative fuels. Production and utilization ; Applied sciences ; Calcination temperature ; Catalysis ; Catalysts ; Catalytic activity ; Catalytic hydrolysis ; Chemistry ; Cobalt ; Cobalt–Manganese–Boride catalyst ; Differential scanning calorimetry ; Energy ; Exact sciences and technology ; Fuels ; General and physical chemistry ; Heat treatment ; Hydrogen ; Hydrolysis ; Scanning electron microscopy ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>International journal of hydrogen energy, 2012, Vol.37 (1), p.995-1001</ispartof><rights>2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-e71673cfa1c0af8bf2e3a22ea1bb21aa4cb51f1657c24317716b766b8e03f8223</citedby><cites>FETCH-LOGICAL-c441t-e71673cfa1c0af8bf2e3a22ea1bb21aa4cb51f1657c24317716b766b8e03f8223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360319911006549$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,4010,4036,4037,23909,23910,25118,27900,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25413109$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Xianxia</creatorcontrib><creatorcontrib>Jia, Chao</creatorcontrib><creatorcontrib>Ding, Xin-Long</creatorcontrib><creatorcontrib>Ma, Zi-Feng</creatorcontrib><title>Effects of heat-treatment temperature on properties of Cobalt–Manganese–Boride as efficient catalyst toward hydrolysis of alkaline sodium borohydride solution</title><title>International journal of hydrogen energy</title><description>Ternary catalyst Cobalt–Manganese–Boride (Co–Mn–B) has been synthesized with chemical co-precipitation followed by calcination at various temperatures. The effects of heat-treatment temperature on the catalytic activity toward hydrolysis of alkaline NaBH
4 solution have been comparatively investigated and analyzed using various techniques including X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), Scanning Electron Microscope (SEM) and BET surface area. The effects of NaOH and NaBH
4 concentration as well as reaction temperature on hydrogen generation rate from alkaline NaBH
4 solution catalyzed by the optimal Co–Mn–B catalyst have been studied. The results, along with the calculated activation energy, have been analyzed and discussed. It is revealed that the Co–Mn–B catalyst heat-treated at 250 °C has the highest catalytic activity with an activation energy of 52.1 kJ mol
−1, the hydrogen generation rate catalyzed by it is 45% higher than that by Co–B catalyst.</description><subject>Activation energy</subject><subject>Alkaline sodium borohydride solution</subject><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Calcination temperature</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Catalytic hydrolysis</subject><subject>Chemistry</subject><subject>Cobalt</subject><subject>Cobalt–Manganese–Boride catalyst</subject><subject>Differential scanning calorimetry</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>General and physical chemistry</subject><subject>Heat treatment</subject><subject>Hydrogen</subject><subject>Hydrolysis</subject><subject>Scanning electron microscopy</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkU1uFDEQhVuISAyBKyBvkNh047J7-mcHjMKPFJQNrK1qd5l4cLcH2x00O-6QG3C0nAR3JrBlY7usr175-RXFC-AVcGhe7yu7vz6ONFMlOEDFZcWb-lGxga7tS1l37eNiw2XDSwl9_6R4GuOec2h53W-K3xfGkE6RecOuCVOZQl4nmhNLNB0oYFoCMT-zQ_C5TJbu2Z0f0KW7X7efcf6GM0XK53c-2JEYRkbGWG1XFY0J3TFmOf8Tw8jyS4PPF_ZeBt13dHYmFv1ol4kNPviVWGWid0uyfn5WnBl0kZ4_7OfF1_cXX3Yfy8urD592by9LXdeQSmqhaaU2CJqj6QYjSKIQhDAMAhBrPWzBQLNttagltBkf2qYZOuLSdELI8-LVSTc7_bFQTGqyUZNz2Z5fosryUHdCtpDR5oTq4GMMZNQh2AnDUQFXayhqr_6GotZQFJcqh5IbXz7MwKjRmYCztvFft9jWIIH3mXtz4igbvrEUVFy_U9NoQ45Ljd7-b9QfreWs-Q</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Yuan, Xianxia</creator><creator>Jia, Chao</creator><creator>Ding, Xin-Long</creator><creator>Ma, Zi-Feng</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>2012</creationdate><title>Effects of heat-treatment temperature on properties of Cobalt–Manganese–Boride as efficient catalyst toward hydrolysis of alkaline sodium borohydride solution</title><author>Yuan, Xianxia ; Jia, Chao ; Ding, Xin-Long ; Ma, Zi-Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-e71673cfa1c0af8bf2e3a22ea1bb21aa4cb51f1657c24317716b766b8e03f8223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Activation energy</topic><topic>Alkaline sodium borohydride solution</topic><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Calcination temperature</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Catalytic hydrolysis</topic><topic>Chemistry</topic><topic>Cobalt</topic><topic>Cobalt–Manganese–Boride catalyst</topic><topic>Differential scanning calorimetry</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>General and physical chemistry</topic><topic>Heat treatment</topic><topic>Hydrogen</topic><topic>Hydrolysis</topic><topic>Scanning electron microscopy</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Xianxia</creatorcontrib><creatorcontrib>Jia, Chao</creatorcontrib><creatorcontrib>Ding, Xin-Long</creatorcontrib><creatorcontrib>Ma, Zi-Feng</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Xianxia</au><au>Jia, Chao</au><au>Ding, Xin-Long</au><au>Ma, Zi-Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of heat-treatment temperature on properties of Cobalt–Manganese–Boride as efficient catalyst toward hydrolysis of alkaline sodium borohydride solution</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2012</date><risdate>2012</risdate><volume>37</volume><issue>1</issue><spage>995</spage><epage>1001</epage><pages>995-1001</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>Ternary catalyst Cobalt–Manganese–Boride (Co–Mn–B) has been synthesized with chemical co-precipitation followed by calcination at various temperatures. The effects of heat-treatment temperature on the catalytic activity toward hydrolysis of alkaline NaBH
4 solution have been comparatively investigated and analyzed using various techniques including X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), Scanning Electron Microscope (SEM) and BET surface area. The effects of NaOH and NaBH
4 concentration as well as reaction temperature on hydrogen generation rate from alkaline NaBH
4 solution catalyzed by the optimal Co–Mn–B catalyst have been studied. The results, along with the calculated activation energy, have been analyzed and discussed. It is revealed that the Co–Mn–B catalyst heat-treated at 250 °C has the highest catalytic activity with an activation energy of 52.1 kJ mol
−1, the hydrogen generation rate catalyzed by it is 45% higher than that by Co–B catalyst.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2011.03.064</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2012, Vol.37 (1), p.995-1001 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671482371 |
source | Elsevier ScienceDirect Journals |
subjects | Activation energy Alkaline sodium borohydride solution Alternative fuels. Production and utilization Applied sciences Calcination temperature Catalysis Catalysts Catalytic activity Catalytic hydrolysis Chemistry Cobalt Cobalt–Manganese–Boride catalyst Differential scanning calorimetry Energy Exact sciences and technology Fuels General and physical chemistry Heat treatment Hydrogen Hydrolysis Scanning electron microscopy Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry |
title | Effects of heat-treatment temperature on properties of Cobalt–Manganese–Boride as efficient catalyst toward hydrolysis of alkaline sodium borohydride solution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T06%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20heat-treatment%20temperature%20on%20properties%20of%20Cobalt%E2%80%93Manganese%E2%80%93Boride%20as%20efficient%20catalyst%20toward%20hydrolysis%20of%20alkaline%20sodium%20borohydride%20solution&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Yuan,%20Xianxia&rft.date=2012&rft.volume=37&rft.issue=1&rft.spage=995&rft.epage=1001&rft.pages=995-1001&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2011.03.064&rft_dat=%3Cproquest_cross%3E1671482371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671482371&rft_id=info:pmid/&rft_els_id=S0360319911006549&rfr_iscdi=true |