Effects of heat-treatment temperature on properties of Cobalt–Manganese–Boride as efficient catalyst toward hydrolysis of alkaline sodium borohydride solution

Ternary catalyst Cobalt–Manganese–Boride (Co–Mn–B) has been synthesized with chemical co-precipitation followed by calcination at various temperatures. The effects of heat-treatment temperature on the catalytic activity toward hydrolysis of alkaline NaBH 4 solution have been comparatively investigat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2012, Vol.37 (1), p.995-1001
Hauptverfasser: Yuan, Xianxia, Jia, Chao, Ding, Xin-Long, Ma, Zi-Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1001
container_issue 1
container_start_page 995
container_title International journal of hydrogen energy
container_volume 37
creator Yuan, Xianxia
Jia, Chao
Ding, Xin-Long
Ma, Zi-Feng
description Ternary catalyst Cobalt–Manganese–Boride (Co–Mn–B) has been synthesized with chemical co-precipitation followed by calcination at various temperatures. The effects of heat-treatment temperature on the catalytic activity toward hydrolysis of alkaline NaBH 4 solution have been comparatively investigated and analyzed using various techniques including X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), Scanning Electron Microscope (SEM) and BET surface area. The effects of NaOH and NaBH 4 concentration as well as reaction temperature on hydrogen generation rate from alkaline NaBH 4 solution catalyzed by the optimal Co–Mn–B catalyst have been studied. The results, along with the calculated activation energy, have been analyzed and discussed. It is revealed that the Co–Mn–B catalyst heat-treated at 250 °C has the highest catalytic activity with an activation energy of 52.1 kJ mol −1, the hydrogen generation rate catalyzed by it is 45% higher than that by Co–B catalyst.
doi_str_mv 10.1016/j.ijhydene.2011.03.064
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671482371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319911006549</els_id><sourcerecordid>1671482371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-e71673cfa1c0af8bf2e3a22ea1bb21aa4cb51f1657c24317716b766b8e03f8223</originalsourceid><addsrcrecordid>eNqFkU1uFDEQhVuISAyBKyBvkNh047J7-mcHjMKPFJQNrK1qd5l4cLcH2x00O-6QG3C0nAR3JrBlY7usr175-RXFC-AVcGhe7yu7vz6ONFMlOEDFZcWb-lGxga7tS1l37eNiw2XDSwl9_6R4GuOec2h53W-K3xfGkE6RecOuCVOZQl4nmhNLNB0oYFoCMT-zQ_C5TJbu2Z0f0KW7X7efcf6GM0XK53c-2JEYRkbGWG1XFY0J3TFmOf8Tw8jyS4PPF_ZeBt13dHYmFv1ol4kNPviVWGWid0uyfn5WnBl0kZ4_7OfF1_cXX3Yfy8urD592by9LXdeQSmqhaaU2CJqj6QYjSKIQhDAMAhBrPWzBQLNttagltBkf2qYZOuLSdELI8-LVSTc7_bFQTGqyUZNz2Z5fosryUHdCtpDR5oTq4GMMZNQh2AnDUQFXayhqr_6GotZQFJcqh5IbXz7MwKjRmYCztvFft9jWIIH3mXtz4igbvrEUVFy_U9NoQ45Ljd7-b9QfreWs-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671482371</pqid></control><display><type>article</type><title>Effects of heat-treatment temperature on properties of Cobalt–Manganese–Boride as efficient catalyst toward hydrolysis of alkaline sodium borohydride solution</title><source>Elsevier ScienceDirect Journals</source><creator>Yuan, Xianxia ; Jia, Chao ; Ding, Xin-Long ; Ma, Zi-Feng</creator><creatorcontrib>Yuan, Xianxia ; Jia, Chao ; Ding, Xin-Long ; Ma, Zi-Feng</creatorcontrib><description>Ternary catalyst Cobalt–Manganese–Boride (Co–Mn–B) has been synthesized with chemical co-precipitation followed by calcination at various temperatures. The effects of heat-treatment temperature on the catalytic activity toward hydrolysis of alkaline NaBH 4 solution have been comparatively investigated and analyzed using various techniques including X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), Scanning Electron Microscope (SEM) and BET surface area. The effects of NaOH and NaBH 4 concentration as well as reaction temperature on hydrogen generation rate from alkaline NaBH 4 solution catalyzed by the optimal Co–Mn–B catalyst have been studied. The results, along with the calculated activation energy, have been analyzed and discussed. It is revealed that the Co–Mn–B catalyst heat-treated at 250 °C has the highest catalytic activity with an activation energy of 52.1 kJ mol −1, the hydrogen generation rate catalyzed by it is 45% higher than that by Co–B catalyst.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2011.03.064</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Activation energy ; Alkaline sodium borohydride solution ; Alternative fuels. Production and utilization ; Applied sciences ; Calcination temperature ; Catalysis ; Catalysts ; Catalytic activity ; Catalytic hydrolysis ; Chemistry ; Cobalt ; Cobalt–Manganese–Boride catalyst ; Differential scanning calorimetry ; Energy ; Exact sciences and technology ; Fuels ; General and physical chemistry ; Heat treatment ; Hydrogen ; Hydrolysis ; Scanning electron microscopy ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>International journal of hydrogen energy, 2012, Vol.37 (1), p.995-1001</ispartof><rights>2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-e71673cfa1c0af8bf2e3a22ea1bb21aa4cb51f1657c24317716b766b8e03f8223</citedby><cites>FETCH-LOGICAL-c441t-e71673cfa1c0af8bf2e3a22ea1bb21aa4cb51f1657c24317716b766b8e03f8223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360319911006549$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,4010,4036,4037,23909,23910,25118,27900,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25413109$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Xianxia</creatorcontrib><creatorcontrib>Jia, Chao</creatorcontrib><creatorcontrib>Ding, Xin-Long</creatorcontrib><creatorcontrib>Ma, Zi-Feng</creatorcontrib><title>Effects of heat-treatment temperature on properties of Cobalt–Manganese–Boride as efficient catalyst toward hydrolysis of alkaline sodium borohydride solution</title><title>International journal of hydrogen energy</title><description>Ternary catalyst Cobalt–Manganese–Boride (Co–Mn–B) has been synthesized with chemical co-precipitation followed by calcination at various temperatures. The effects of heat-treatment temperature on the catalytic activity toward hydrolysis of alkaline NaBH 4 solution have been comparatively investigated and analyzed using various techniques including X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), Scanning Electron Microscope (SEM) and BET surface area. The effects of NaOH and NaBH 4 concentration as well as reaction temperature on hydrogen generation rate from alkaline NaBH 4 solution catalyzed by the optimal Co–Mn–B catalyst have been studied. The results, along with the calculated activation energy, have been analyzed and discussed. It is revealed that the Co–Mn–B catalyst heat-treated at 250 °C has the highest catalytic activity with an activation energy of 52.1 kJ mol −1, the hydrogen generation rate catalyzed by it is 45% higher than that by Co–B catalyst.</description><subject>Activation energy</subject><subject>Alkaline sodium borohydride solution</subject><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Calcination temperature</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Catalytic hydrolysis</subject><subject>Chemistry</subject><subject>Cobalt</subject><subject>Cobalt–Manganese–Boride catalyst</subject><subject>Differential scanning calorimetry</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>General and physical chemistry</subject><subject>Heat treatment</subject><subject>Hydrogen</subject><subject>Hydrolysis</subject><subject>Scanning electron microscopy</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkU1uFDEQhVuISAyBKyBvkNh047J7-mcHjMKPFJQNrK1qd5l4cLcH2x00O-6QG3C0nAR3JrBlY7usr175-RXFC-AVcGhe7yu7vz6ONFMlOEDFZcWb-lGxga7tS1l37eNiw2XDSwl9_6R4GuOec2h53W-K3xfGkE6RecOuCVOZQl4nmhNLNB0oYFoCMT-zQ_C5TJbu2Z0f0KW7X7efcf6GM0XK53c-2JEYRkbGWG1XFY0J3TFmOf8Tw8jyS4PPF_ZeBt13dHYmFv1ol4kNPviVWGWid0uyfn5WnBl0kZ4_7OfF1_cXX3Yfy8urD592by9LXdeQSmqhaaU2CJqj6QYjSKIQhDAMAhBrPWzBQLNttagltBkf2qYZOuLSdELI8-LVSTc7_bFQTGqyUZNz2Z5fosryUHdCtpDR5oTq4GMMZNQh2AnDUQFXayhqr_6GotZQFJcqh5IbXz7MwKjRmYCztvFft9jWIIH3mXtz4igbvrEUVFy_U9NoQ45Ljd7-b9QfreWs-Q</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Yuan, Xianxia</creator><creator>Jia, Chao</creator><creator>Ding, Xin-Long</creator><creator>Ma, Zi-Feng</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>2012</creationdate><title>Effects of heat-treatment temperature on properties of Cobalt–Manganese–Boride as efficient catalyst toward hydrolysis of alkaline sodium borohydride solution</title><author>Yuan, Xianxia ; Jia, Chao ; Ding, Xin-Long ; Ma, Zi-Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-e71673cfa1c0af8bf2e3a22ea1bb21aa4cb51f1657c24317716b766b8e03f8223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Activation energy</topic><topic>Alkaline sodium borohydride solution</topic><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Calcination temperature</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Catalytic hydrolysis</topic><topic>Chemistry</topic><topic>Cobalt</topic><topic>Cobalt–Manganese–Boride catalyst</topic><topic>Differential scanning calorimetry</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>General and physical chemistry</topic><topic>Heat treatment</topic><topic>Hydrogen</topic><topic>Hydrolysis</topic><topic>Scanning electron microscopy</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Xianxia</creatorcontrib><creatorcontrib>Jia, Chao</creatorcontrib><creatorcontrib>Ding, Xin-Long</creatorcontrib><creatorcontrib>Ma, Zi-Feng</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Xianxia</au><au>Jia, Chao</au><au>Ding, Xin-Long</au><au>Ma, Zi-Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of heat-treatment temperature on properties of Cobalt–Manganese–Boride as efficient catalyst toward hydrolysis of alkaline sodium borohydride solution</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2012</date><risdate>2012</risdate><volume>37</volume><issue>1</issue><spage>995</spage><epage>1001</epage><pages>995-1001</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>Ternary catalyst Cobalt–Manganese–Boride (Co–Mn–B) has been synthesized with chemical co-precipitation followed by calcination at various temperatures. The effects of heat-treatment temperature on the catalytic activity toward hydrolysis of alkaline NaBH 4 solution have been comparatively investigated and analyzed using various techniques including X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), Scanning Electron Microscope (SEM) and BET surface area. The effects of NaOH and NaBH 4 concentration as well as reaction temperature on hydrogen generation rate from alkaline NaBH 4 solution catalyzed by the optimal Co–Mn–B catalyst have been studied. The results, along with the calculated activation energy, have been analyzed and discussed. It is revealed that the Co–Mn–B catalyst heat-treated at 250 °C has the highest catalytic activity with an activation energy of 52.1 kJ mol −1, the hydrogen generation rate catalyzed by it is 45% higher than that by Co–B catalyst.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2011.03.064</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2012, Vol.37 (1), p.995-1001
issn 0360-3199
1879-3487
language eng
recordid cdi_proquest_miscellaneous_1671482371
source Elsevier ScienceDirect Journals
subjects Activation energy
Alkaline sodium borohydride solution
Alternative fuels. Production and utilization
Applied sciences
Calcination temperature
Catalysis
Catalysts
Catalytic activity
Catalytic hydrolysis
Chemistry
Cobalt
Cobalt–Manganese–Boride catalyst
Differential scanning calorimetry
Energy
Exact sciences and technology
Fuels
General and physical chemistry
Heat treatment
Hydrogen
Hydrolysis
Scanning electron microscopy
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Effects of heat-treatment temperature on properties of Cobalt–Manganese–Boride as efficient catalyst toward hydrolysis of alkaline sodium borohydride solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T06%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20heat-treatment%20temperature%20on%20properties%20of%20Cobalt%E2%80%93Manganese%E2%80%93Boride%20as%20efficient%20catalyst%20toward%20hydrolysis%20of%20alkaline%20sodium%20borohydride%20solution&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Yuan,%20Xianxia&rft.date=2012&rft.volume=37&rft.issue=1&rft.spage=995&rft.epage=1001&rft.pages=995-1001&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2011.03.064&rft_dat=%3Cproquest_cross%3E1671482371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671482371&rft_id=info:pmid/&rft_els_id=S0360319911006549&rfr_iscdi=true